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ABSTRACT

Continuous-time reinforcement learning (CTRL) provides a natural framework for
sequential decision-making in dynamic environments where interactions evolve
continuously over time. While CTRL has shown growing empirical success, its
ability to adapt to varying levels of problem difficulty remains poorly understood.
In this work, we investigate the instance-dependent behavior of CTRL and intro-
duce a simple, model-based algorithm built on maximum likelihood estimation
(MLE) with a general function approximator. Unlike existing approaches that
estimate system dynamics directly, our method estimates the state marginal density
to guide learning. We establish instance-dependent performance guarantees by
deriving a regret bound that scales with the total reward variance and measurement
resolution. Notably, the regret becomes independent of the specific measurement
strategy when the observation frequency adapts appropriately to the problem’s
complexity. To further improve performance, our algorithm incorporates a random-
ized measurement schedule that enhances sample efficiency without increasing
measurement cost. These results highlight a new direction for designing CTRL
algorithms that automatically adjust their learning behavior based on the underlying
difficulty of the environment.

1 INTRODUCTION

Many real-world systems—such as autonomous robots, financial markets, and medical interven-
tions—evolve in continuous time, where actions and feedback unfold without discrete intervals. This
motivates the study of continuous-time reinforcement learning (CTRL), a framework where the agent
learns to interact with a dynamic environment in real time to maximize cumulative reward. Unlike its
discrete-time counterpart, CTRL is grounded in the natural temporal structure of many applications,
making it particularly well-suited for control in physical and continuous systems. Recent work has
highlighted its empirical potential, drawing on tools from continuous control theory (Greydanus
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Figure 1: We depict the state trajectory xn(t) over t ∈ [0, T ] in episode n, with xn(0) = xini and
xn(T ) at the endpoints. Observation times tkn are marked by black dots. Each measurement interval
∆n,k = tk+1

n − tkn is overlaid by a brown rectangle of width ∆n,k and height proportional to ∆n,k,
so that its area encodes ∆2

n,k in our regret bound. The green shading illustrates the total variance
Varun . Proper measurement gap should be selected in accordance with policy variance Varun to
achieve an optimal instance-dependent performance.

et al., 2019; Yildiz et al., 2021; Lutter et al., 2021; Treven et al., 2024a) and the emerging use of
diffusion-based models (Yoon et al., 2024; Xie et al., 2023). These developments underscore CTRL’s
growing relevance and its advantage in capturing fine-grained interactions that discrete-time methods
often approximate only coarsely.

In this paper, we focus on the adaptivity of CTRL—that is, the ability of a learning algorithm to
adjust its behavior and complexity in response to the difficulty of the problem instance. Intuitively,
simpler environments should require less exploration and faster convergence, while more complex
dynamics or reward structures may demand prolonged learning and finer control. For example,
in robotic manipulation, navigating an open space may require significantly less precision and
feedback sensitivity compared to threading a needle or interacting with deformable objects. Despite
its importance, adaptivity remains largely underexplored in the CTRL literature: existing methods
often lack theoretical guarantees or empirical mechanisms to modulate learning effort according to
task complexity. This motivates our first core question:

Can we design a CTRL algorithm that is provably adaptive to problem difficulty, offering
instance-dependent performance guarantees?

A natural starting point to investigate adaptivity in CTRL is to approximate the continuous-time
process using discrete-time reinforcement learning with equidistant observations. This enables us to
draw on the extensive literature on adaptivity in discrete-time RL, where regret bounds and learning
dynamics have been thoroughly analyzed (Zhao et al., 2023; Zhou et al., 2023; Wang et al., 2024b;a).
However, existing CTRL formulations typically apply a fixed, uniform measurement scheme to all
environments, ignoring the heterogeneity in their underlying dynamics. For systems with unevenly
evolving trajectories, fixed-interval sampling may either miss important events or expend effort
on redundant measurements. This lack of adaptivity prevents CTRL methods from tailoring their
measurement schedule to the actual variability of the environment. Consequently, a key question
arises:

How does the choice of measurement strategy in CTRL influence its ability to adapt across problem
instances?

In this work, we aim to address the two core questions outlined above. Our main contributions are
summarized as follows.

• We introduce a conceptually simple model-based algorithm for CTRL, termed CT-MLE
(Continuous-Time Reinforcement Learning with Maximum Likelihood Estimation). Unlike previ-
ous methods that estimate the underlying system dynamics directly (Treven et al., 2024a; Zhao
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et al., 2025), CT-MLE instead estimates the marginal state density using maximum likelihood
estimation (MLE) with a general function approximator (e.g., neural networks or kernel models).
This shift—from modeling dynamics to modeling marginal distributions—offers greater modeling
flexibility and improved sample efficiency in practice. Additionally, CT-MLE is modular and
compatible with a broad range of policy classes and sampling strategies, making it applicable to a
wide variety of CTRL settings.

• From a theoretical perspective, we establish a regret bound for CT-MLE over the first N episodes
of interaction. Specifically, we show that the regret satisfies

Õ

(
d2 + d

√√√√ N∑
n=1

mn−1∑
k=0

∆2
n,k +

N∑
n=1

Varun
)
,

where d denotes the complexity of the function class used for marginal density estimation, mn

represents the number of measurements in episode n, ∆n,k represents the k-th measurement gap
in episode n, and Varun quantifies the total variance of the integrated reward under policy un. A
central insight of our analysis is that when the measurement schedule is adapted to the problem
instance—i.e., when

∑mn−1
k=0 ∆2

n,k is chosen in accordance with Varun—the regret becomes
primarily dependent on the reward variance and is nearly independent of the measurement schedule
itself. This instance-dependent property highlights a key distinction from traditional discrete-
time reinforcement learning, where measurements are typically uniform and agnostic to problem
complexity. Figure 1 provides a demonstration of this phenomenon. Our results underscore the
importance of adaptive measurement strategies for achieving instance-optimal performance in the
continuous-time setting.

• A core technical innovation in CT-MLE is its Monte Carlo-type randomized measurement strategy,
which augments the default measurement grid with additional observation points sampled within
each interval. This randomization enables unbiased estimation of the reward integral across
each measurement gap, while maintaining the total number of measurements (i.e., measurement
complexity) at the same order. This design not only enhances the practical effectiveness of CT-MLE
but also introduces a general technique that may be of independent interest for continuous-time
decision-making problems.

Notation. We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For two
positive functions a(x) and b(x) defined on a common domain, we write a(x) ≲ b(x) if there exists
an absolute constant C > 0 such that a(x) ≤ Cb(x) for all x in the domain. Given a distribution
p(x), we use Ex∼p[·] to denote expectation and Vx∼p[·] to denote variance. For two distributions p
and q, we define their squared Hellinger distance as H2(p ∥ q) := 1−

∫ √
p(x)q(x) dx.

2 ADDITIONAL RELATED WORK

2.1 CONTINUOUS-TIME REINFORCEMENT LEARNING

Our work resides within the paradigm of CTRL, a foundational research thread in the control commu-
nity. Early studies emphasized planning in analytically tractable settings such as the linear–quadratic
regulator (LQR) (Doya, 2000; Vrabie & Lewis, 2009; Faradonbeh & Faradonbeh, 2023; Caines &
Levanony, 2019; Huang et al., 2024; Basei et al., 2022; Szpruch et al., 2024). A pivotal advance
occurred when Chen et al. (2018) introduced neural function approximation for learning nonlinear
dynamics and value functions, thereby catalysing data-driven CTRL. Building on this foundation,
Yildiz et al. (2021) proposed an episodic model-based framework that alternates between fitting ODE
models to collected trajectories and solving the resulting optimal-control problem with a continuous-
time actor–critic. Subsequently, Holt et al. (2024) showed that under costly observations, uniform
time sampling is suboptimal and that state-dependent schedules can yield higher returns. Parallel
efforts (Karimi, 2023; Ni & Jang, 2022; Holt et al., 2023) have bridged continuous-time theory with
practical implementations by considering deterministic systems with discrete measurements or control
updates. More recent analyses have extended these ideas to deterministic and stochastic dynamics
with nonlinear approximation (Treven et al., 2024a;b), and Zhao et al. (2025) further broadened
the approximation class while relaxing assumptions on epistemic-uncertainty estimators. Yet the
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existing theory largely provides worst-case guarantees. We close this gap by establishing the first
variance-aware, nearly horizon-free second-order regret bound for stochastic CTRL under general
function approximation—measured via the eluder dimension—and show that a simple, standard
MLE-based model-based algorithm attains this bound.

2.2 VARIANCE-AWARE REINFORCEMENT LEARNING

There has been a series of work studying variance-aware or horizon-free sample complexity for
discrete-time reinforcement learning (Simchowitz & Jamieson, 2019; Jin et al., 2020; Dann et al.,
2021; Xu et al., 2021; Wagenmaker et al., 2022; He et al., 2021a;b; Zhou et al., 2021b;a; Zhao et al.,
2022; Zhou & Gu, 2022). To mention a few, early online-learning work provided second-order
bounds: Cesa-Bianchi et al. (2007) derived refined regret bounds based on squared losses in expert
advice, and Ito et al. (2020) established tight first- and second-order regret for adversarial linear
bandits using Bernstein-type concentration. Extending to MDPs, Zanette & Brunskill (2019)’s
EULER algorithm achieves regret scaling with the maximum per-step return variance rather than
H , and Foster & Krishnamurthy (2021) used triangular-discrimination bonuses to obtain small-loss
bounds in contextual bandits. For structured function approximation, Kim et al. (2022) obtained
horizon-free, variance-adaptive regret for linear mixture MDPs via weighted least-squares, Zhao
et al. (2023) provided computationally efficient variance-dependent bounds for linear bandits and
mixtures, and Zhang et al. (2021) devised variance-aware confidence sets giving logarithmic horizon
dependence. Distributional RL has delivered second-order guarantees under general classes by
modeling full return distributions (Zhang et al., 2022), and Huang et al. (2024) achieved sublinear
regret for continuous-time stochastic LQR by estimating transition. Despite these advances, all
require specialized variance or distributional machinery; our work shows that a standard MLE-based
model-based RL approach attains nearly horizon-free, second-order variance-dependent bounds under
general function approximation without bespoke variance estimation or distributional techniques,
similar to Wang et al. (2024b) but under the continuous-time setup.

3 PROBLEM SETUP

Stochastic Differential Equation Formulation. We consider a general nonlinear continuous-time
dynamical system governed by a stochastic differential equation (SDE). Let x(·) denote the state
trajectory over a fixed planning horizon [0, T ], where x(t) ∈ X ⊆ Rl for all t ∈ [0, T ]. The system
dynamics under a deterministic policy u ∈ Π : X → U ⊆ Rr are described by

dx(t) = f(x(t), u(x(t))) dt+ g(x(t), u(x(t))) dw(t),

where w(t) ∈ Rl is a standard Wiener process and the SDE is interpreted in the Itô sense. Here,
f ∈ F and g ∈ G, where each f : X ×U → Rl and g : X ×U → Rl×l denote the drift and diffusion
functions, respectively. Given an initial state x(0) = x, we denote by pf,g(u, x) the law of the
trajectory x(·). We write pf,g(u, x, s) for the marginal distribution of x(s) and use pf,g(· | u, x, s) to
denote its corresponding density function.

Learning Protocol. The learning process unfolds in episodes. In each episode n = 1, . . . , N ,
the agent executes a policy un and observes the trajectory x(·) ∼ pf∗,g∗(un, xini), where (f∗, g∗)
denotes the unknown environment and xini is the fixed initial state. During execution, the agent
selects a set of measurement times {tkn}

mn
k=1 ⊂ [0, T ] at which observations are collected. These

observations are used to update the policy for the next episode. The agent’s objective is to find a
policy that maximizes the expected cumulative reward under the reward function b : X × U → R:

u∗ = argmax
u∈Π

Rf∗,g∗(u), where Rf,g(u) := Vf,g(u, xini, 0),

and the value function is given by

Vf,g(u, x, s) := Ex(·)∼pf,g(u,xini)

[∫ T

t=s

b(x(t), u(x(t))) dt

∣∣∣∣x(s) = x

]
.
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Algorithm 1 Continuous-Time Reinforcement Learning with Maximum Likelihood Estimation

Require: Episode number N , policy class Π, initial state xini, drift class F , diffusion class G, reward
function b, confidence radius β, planning horizon T .

1: For each n ∈ [N ], determine a fixed measurement time sequence 0 = t0n < · · · < tmnn = T . For
any 0 ≤ k < mn, denote measurement gaps ∆n,k := tk+1

n − tkn.
2: for episode n = 1, . . . , N do
3: Set confidence sets of (f, g) as Pn, where

Pn :=

{
(f, g) ∈ F × G :

n−1∑
i=1

mi−1∑
k=0

log pf,g(xi(t
k+1
i )|ui, xi(tki ),∆i,k)

≥ max
(f ′,g′)∈F×G

n−1∑
i=1

mi−1∑
k=0

log pf ′,g′(xi(t
k+1
i )|ui, xi(tki ),∆i,k)− β

}
.

4: (Randomized strategy) set P̂n following Algorithm 2.
5: Set policy un, fn, gn as un, fn, gn = argmaxu∈Π,(f,g)∈Pn∩P̂n Rf,g(u).
6: Execute the n-th episode and observe xn(t0n), . . . , xn(t

mn
n ).

7: (Randomized strategy) obtain additional observations to build P̂n following Algorithm 2.
8: end for
9: return Randomly pick an n ∈ [N ] uniformly and output û as un.

Performance Metrics. We evaluate algorithmic performance using several metrics. The regret is
defined as

Regret(N) :=

N∑
n=1

(Rf∗,g∗(u
∗)−Rf∗,g∗(un)) ,

We say a policy u is ϵ-optimal if Rf∗,g∗(u
∗)−Rf∗,g∗(u) ≤ ϵ. For any CTRL algorithm that returns

an ϵ-optimal policy after N episodes, we define the episode complexity as N , and the measurement
complexity as

∑N
n=1mn, where mn denotes the number of measurements in episode n. We also

consider the λ-total complexity for any λ ∈ [0, 1], defined as the weighted sum: (1 − λ)N +

λ
∑N
n=1mn. This interpolates between pure episode complexity (λ = 0) and pure measurement

complexity (λ = 1).

4 CTRL WITH MAXIMUM LIKELIHOOD ESTIMATION

In this section, we introduce our algorithm, CT-MLE, as described in Algorithm 1. At a high level,
each episode n follows the standard optimistic model-based approach in CTRL (Treven et al., 2024b).
Specifically, the agent constructs a confidence set for the unknown drift f∗ and diffusion g∗, and
then applies the principle of optimism to select a near-optimal policy un ∈ Π. Such an optimization
step requires an oracle access to maximize over joint sets of policy u and dynamics f, g, which are
standard in literature (Treven et al., 2024a; Jin et al., 2021; Abbasi-Yadkori et al., 2011). The selected
policy is executed in the environment, yielding a continuous-time trajectory xn(·). The agent then
collects informative observations from this trajectory to refine its confidence set for the next episode.
This framework parallels optimistic approaches in discrete-time RL (Abbasi-Yadkori et al., 2011; Jin
et al., 2019; Russo & Van Roy, 2013; Jin et al., 2021), though applied to the continuous-time setting.

A key distinction in CTRL is that the agent must decide when to observe the trajectory, since data
is generated in continuous time. To address this, CT-MLE introduces a sequence of measurement
times (tkn)

mn
k=1 for each episode n. The agent collects observations only at these time points, i.e.,

{xn(tkn)}
mn
k=1. Importantly, we allow the measurement times to be non-uniformly spaced, meaning

the measurement gap ∆n,k := tk+1
n − tkn can vary across time.

Maximum Likelihood Estimation. To construct the confidence set, we begin by examining the
learning objective in CTRL. Due to the Markov property of the Itô process, for any drift-diffusion
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Algorithm 2 Monte Carlo-Type Estimation

Require: Current episode n, history observations {xi(tki ), xi(tki + ∆̂i,k)}i=1,...,n−1,k=0,...,mi−1,
measurement gaps {∆n,k}k=0,...,mn−1.

1: Build confidence set P̂n as

P̂n :=

{
(f, g) ∈ F × G :

n−1∑
i=1

mi−1∑
k=0

log pf,g(xi(t
k
i + ∆̂i,k)|ui, xi(tki ), ∆̂i,k)

≥ max
(f ′,g′)∈F×G

n−1∑
i=1

mi−1∑
k=0

log pf ′,g′(xi(t
k
i + ∆̂i,k)|ui, xi(tki ), ∆̂i,k)− β

}
.

2: Set ∆̂n,k ∼ Unif(0,∆n,k) for all 0 ≤ k < mn.
3: return Confidence set P̂n and observations xn(t̂0n + ∆̂n,0), . . . , xn(t

mn−1
n + ∆̂n,mn−1).

pair (f, g), policy u, state x, time s, and measurement gap ∆, the following identity holds:

Vf,g(u, x, s) = Ex′∼pf,g(u,x,∆)

[
Vf,g(u, x

′, s+∆)
]
+ Ex(·)∼pf,g(u,x)

[∫ ∆

t=0

b(x(t), u(x(t))) dt

]
. (4.1)

A detailed derivation for equation 4.1 is provided in Appendix A.4. This can be viewed as a
continuous-time analogue of the Bellman equation. It implies that to evaluate the value function
Vf∗,g∗(u, xini, 0), it suffices to estimate the marginal distribution pf∗,g∗(u, x,∆) and the trajectory
distribution pf∗,g∗(u, x) over the interval [0,∆]. To estimate the first term in equation 4.1, we
construct a confidence set Pn based on MLE over historical observations, as defined in line 3 of
Algorithm 1, inspired by existing works about MLE for discrete-time RL (Agarwal et al., 2020; Liu
et al., 2022; Wang et al., 2024a;b). Specifically, Pn contains all drift-diffusion pairs (f, g) whose
likelihood on the conditional distribution pf,g(xi(tk+1

i ) | ui, xi(tki ),∆i,k) is sufficiently close to that
of the MLE solution. The proximity is controlled via a confidence radius parameter β.

We note that existing approaches (Treven et al., 2024a; Zhao et al., 2025) typically aim to learn the
underlying dynamics (f∗, g∗) by directly estimating the drift term f∗(x(t)). In the corresponding
deterministic setting where the diffusion term is zero, this drift is equivalent to the time derivative
ẋ(t). However, estimating this term from discrete and noisy trajectory data often requires non-trivial
procedures like finite-difference approximations, which introduces additional algorithmic complexity
and sensitivity to noise. In contrast, our approach relies solely on the observed states at discrete
measurement times, making the estimation process both simpler and more robust.

Randomized Additional Measurement. The second term in equation 4.1 involves an integral over
the trajectory segment x(·) governed by the law pf,g(u, x). While this integral could in principle
require full knowledge of the process, it can instead be estimated using a single sample point via a
Monte Carlo-style approach. To implement this, we augment CT-MLE with an additional randomized
measurement step, as described in Algorithm 2. Specifically, for each interval [tki , t

k+1
i ), we sample

a random time t̂i,k = tki + ∆̂i,k uniformly from the interval and record the state xi(t̂i,k). It is
worth noting that this modification requires only one additional measurement per interval, effectively
doubling the number of measurements compared to CT-MLE without Algorithm 2. Using these
additional samples, we construct a second confidence set P̂n, based on the conditional distribution
pf,g(xi(t̂i,k) | ui, xi(tki ), ∆̂i,k) . Notably, our algorithm does not explicitly compute the integral
in equation 4.1; instead, the randomized measurements serve to implicitly capture the integral’s
behavior by refining the confidence set around the true dynamics (f∗, g∗). This enables us to eliminate
the continuity assumption without compromising performance guarantees.

5 ANALYSIS OF CT-MLE

We present the theoretical analysis of Algorithm 1. We begin by introducing the following regularity
assumption, which summarizes all the conditions we impose on the system dynamics.
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Assumption 5.1. The continuous-time system dynamics satisfy the following conditions:

• The reward function b(x, u) and the initial state xini are known to the agent.

• The reward function is bounded: 0 ≤ b(x, u) ≤ 1 for all (x, u) ∈ X × U . Furthermore, for any
trajectory x(·) ∼ pf∗,g∗(u, xini), the cumulative reward is bounded as

∫ T
0
b(x(t), u(x(t))) dt ≤ 1.

Remark 5.2. The boundedness assumption on b is made for simplicity. For any general reward
function b satisfying 0 ≤ b(x, u) ≤ B1 and

∫ T
0
b(x(t), u(x(t))) dt ≤ B2, one can normalize the

reward by defining b′ := b/max(B1, B2) and apply the algorithm and analysis to b′.

Next, we introduce the notion of total variance for a policy u, a concept originating from discrete-time
reinforcement learning (Wang et al., 2024b; Zhou et al., 2023), which serves as an instance-dependent
measure of problem hardness.
Definition 5.3. For any policy u ∈ Π, we define its total variance Varu and the maximal total
variance VarΠ as

Varu := Vx(·)∼pf∗,g∗ (u,xini)

[∫ T

0

b
(
x(t), u(x(t))

)
dt

]
, VarΠ := max

u∈Π
Varu.

By Assumption 5.1, it immediately follows that Varu ≤ 1 for any u ∈ Π. The total variance Varu

quantifies the uncertainty in the cumulative reward under the stochastic dynamics, and is tightly
connected to the diffusion term g. The following proposition formally characterizes this dependence.
Proposition 5.4. Suppose the following conditions hold:

• The reward function b is Lb-Lipschitz continuous: for all x, x′ ∈ X and y, y′ ∈ U ,

|b(x, y)− b(x′, y′)| ≤ Lb (∥x− x′∥2 + ∥y − y′∥2) .

• The drift f ∈ F is Lf -Lipschitz continuous, and the policy u ∈ Π is Lu-Lipschitz continuous:

∥f(x, y)− f(x′, y′)∥2 ≤ Lf (∥x− x′∥2 + ∥y − y′∥2) , ∥u(x)− u(y)∥2 ≤ Lu∥x− y∥2.

• The diffusion term g has bounded Frobenius norm: ∥g(x, y)∥F ≤ G for all x ∈ X and y ∈ U .

Then, for any u ∈ Π, the total variance is bounded as

Varu ≤ min

{
1, G2 · TL

2
b(1 + Lu)

2Lf

(
e2Lf (1+Lu)T − 1

)}
.

Proposition 5.4 shows that the total variance Varu is controlled by the magnitude of the diffusion
term G. In particular, in a deterministic environment (G = 0), we have Varu = 0 for all u ∈ Π.
Furthermore, if the policy u is less sensitive to its input (i.e., has small Lu), the total variance is also
reduced. These observations support the use of Varu as a meaningful measure of instance difficulty
in continuous-time reinforcement learning.

Next, we recall the notion of the eluder dimension (Russo & Van Roy, 2013; Wang et al., 2023;
2024b; Zhao et al., 2025), which we use to characterize the complexity of the system dynamics class
F × G. In addition to the eluder dimension, we also quantify the richness of the dynamics class
through its bracketing numbers (Geer, 2000), defined as follows.
Definition 5.5. Let Ψ be a class of real-valued functions defined on a domain Y . The ϵ-eluder
dimension DEp(Ψ,Y, ϵ) is the length of the longest sequence y1, . . . , yL ⊆ Y such that for all
t ∈ [L], there exists ψ ∈ Ψ satisfying

∑t−1
ℓ=1 |ψ(yℓ)|p ≤ ϵp and |ψ(yt)| > ϵ.

In this work, we specify Y = Π × X × [0, T ] and define the function class Ψ = {ψf,g}(f,g)∈F×G ,
where

ψf,g(u, x, t) := H2 (pf,g(u, x, t) ∥ pf∗,g∗(u, x, t)) .

For notational convenience, we write d1/ϵ to denote DE1(Ψ,Y, ϵ).
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Definition 5.6. Let Υ be a class of real-valued functions defined on the domain Y × X . For any
functions l1, l2 : Y × X → R satisfying l1(y, x) ≤ l2(y, x) for all (y, x) ∈ Y × X , the bracket
[l1, l2] = {υ ∈ Υ : l1(y, x) ≤ υ(y, x) ≤ l2(y, x), ∀(y, x) ∈ Y × X}. Given a norm ∥ · ∥ on
functions over Y × X , the bracket [l1, l2] is an ϵ-bracket if ∥l2 − l1∥ ≤ ϵ. The ϵ-bracketing number
of Υ with respect to ∥ · ∥, denoted N[](ϵ,Υ, ∥ · ∥), is the minimal number of ϵ-brackets required to
cover Υ.

In this work, we take Y = Π × X × [0, T ] and consider the function class Υ = {υf,g}(f,g)∈F×G
with the norm ∥ · ∥ defined by

υf,g(u, x, t, x
′) := pf,g(x

′ | u, x, t), ∥υ∥ = sup
(u,x,t)∈Y

∫
x′
|υ(u, x, t, x′)|dx′. (5.1)

For notational convenience, we write C1/ϵ to denote N[](ϵ,Υ, ∥ · ∥).
Remark 5.7. The function class Ψ is chosen for analytical clarity. First, by assuming a known
reward function (Assumption 5.1), we isolate the core challenge to learning the unknown dynamics
(f∗, g∗). This allows for a focused analysis of how the measurement strategy and stochasticity affect
regret. While a unified analysis incorporating the reward function is common in other settings (Jin
et al., 2021; He et al., 2021b), its extension to continuous time is a nontrivial challenge deferred to
future work. Second, using the squared Hellinger distance provides a direct analytical bridge between
the statistical error of our estimator and the regret decomposition, which is central to the proof for the
final regret bound.
Remark 5.8. Treven et al. (2024a) introduced a model complexity notion IN based on an external
estimator for the epistemic uncertainty of f∗, g∗. In contrast, our eluder dimension requires no such
estimator, offering a broader, self-contained characterization. Zhao et al. (2025) also considered
eluder dimension in CTRL, but theirs targets only the nonlinearity in estimating f∗, while ours
captures the nonlinearity of the full induced distribution pf∗,g∗ , yielding a more general measure.

We show that several natural classes of (f, g) admit a small eluder dimension d1/ϵ and bracketing
number C1/ϵ.
Proposition 5.9. Suppose the marginal density admits the quadratic form

pf,g(x
′ | u, x, t) =

(
ϕ(u, x, t)⊤µf,g(x

′)
)2
, ϕ, µf,g ∈ Rd,

and assume ∥ϕ(u, x, t)∥2 ≤ 1 and
∫
x′ ∥µf,g(x′)∥22 dx′ ≤ B. Then the corresponding ψf,g and υf,g

satisfy

d1/ϵ ≲ d2 log

(
1 +

B2

ϵ2

)
, C1/ϵ = |F||G|.

Proposition 5.10. Suppose the marginal density admits the quadratic representation

pf,g(x
′ | u, x, t) =

(
ϕ(u, x, t)⊤Mf,g µ(x

′)
)2
, ϕ, µ ∈ Rd, Mf,g ∈ Rd×d.

Assume ∥ϕ(u, x, t)∥2 ≤ 1, ∥µ(x′)∥2 ≤
√
B, ∥Mf,g∥F ≤

√
B, each coordinate of ϕ and µ is nonneg-

ative, and the normalization
∫
x′ [µ(x

′)]i dx
′ = 1 holds for all coordinates. Then the corresponding

ψf,g and υf,g satisfy

d1/ϵ ≲ d2 log

(
1 +

B2

ϵ2

)
, C1/ϵ ≲

(
3d2B3

ϵ

)d×d
.

We now present our main theory.

Theorem 5.11. For any fixed grid (tkn), define ∆n :=
√∑mn−1

k=0 ∆2
n,k and mN :=

∑N
n=1mn.

Given 0 < δ < 1, set ι := log(N/δ) log(mN ), C3mN
:= N[](1/(3mN ),Ψ, ∥ · ∥) following

Definition 5.6. Then denote β = 5 log(NC3mN
/δ), dmN

:= DE1(Ψ,Y, 1/mN ) and d8βmN
:=

DE1(Ψ,Y, 1/(8βmN )) following Definition 5.5, under Assumption 5.1, with probability at least
1− 8δ, we have

Regret(N) ≲ ι

(
d8βmN

β +

√√√√dmN
β

( N∑
n=1

∆2
n +

N∑
n=1

Varun
))

. (5.2)
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Proof sketch. We summarize the main challenges and ideas behind the proof of Theorem 5.11.

• The first challenge is the decomposition of Regret(N), since the value function Vf,g(u, x, t)
is defined in continuous time and thus lacks the natural step-wise structure of discrete-time
MDPs. We rely on the continuous-time one-step identity in equation 4.1: by the Markov
property, the future trajectory depends on the past only through the current state, so the dis-
tribution of x(s + ∆) is fully characterized by the transition density pf,g(u, x,∆). Applying
this recursion on the measurement grid {tkn}

mn
k=0 yields a discrete sequence of one-step rela-

tions, allowing the suboptimality gap Vf∗,g∗(u
∗, xini, 0) − Vf∗,g∗(un, xini, 0) to be decomposed

into value gaps Vfn,gn(un, xn(t
k
n), t

k
n) − Vfn,gn(un, xn(t

k+1
n ), tk+1

n ) and reward-integral gaps

E
[∫∆n,k

0
b(x(t), un(t)) dt

]
−
∫ tk+1

n

tkn
b(xn(t), un(t)) dt.

• The value gaps can be controlled using standard techniques from discrete-time analyses.
The reward-integral gaps, however, are new in continuous time. Bounding the integral

E
[∫∆n,k

0
b(x(t), un(t)) dt

]
−
∫ tk+1

n

tkn
b(xn(t), un(t)) dt requires knowledge of the trajectory in-

side each interval, which in principle demands pointwise estimation of pf∗,g∗ . Since pointwise
convergence is unattainable under typical learning guarantees, a direct approach is infeasible.
To overcome this issue, Algorithm 2 augments each interval with a single auxiliary observation
sampled uniformly at time ∆̂n,k. This randomization produces an unbiased Monte Carlo estimate
of the reward integral and enables the construction of an additional likelihood-based confidence set
that captures intra-interval behavior while keeping the measurement cost essentially unchanged.

• The final step combines these estimates within a regret analysis that incorporates the variance
term Varun , which captures diffusion-driven fluctuations of the reward integral. These fluctuations
accumulate at order ∆2

n,k, leading to the additional term
∑N
n=1 ∆

2
n in the final regret bound. This

term is intrinsic to the continuous-time dynamics and has no analogue in the discrete-time setting.

To the best of our knowledge, the resulting regret bound of Algorithm 1 is the first instance-dependent
second-order regret bound established in CTRL. Notably, the dependence on Varun is independent
of the measurement strategy, highlighting it as a fundamental quantity characterizing the intrinsic
difficulty of the continuous-time system dynamics. We summarize several key remarks below.
Remark 5.12. The regret bound equation 5.2 remains unchanged as long as the total measurement
budget ∆n is fixed. This implies that CTRL is robust to different choices of measurement schedules,
provided the total measurement effort remains the same. This aligns with recent observations (Treven
et al., 2024b) suggesting that CTRL is relatively insensitive to the minimum measurement gap
mink∆n,k. In particular, while equidistant measurements may seem natural—as they mirror discrete-
time RL—they are not the only strategy capable of achieving near-optimal regret guarantees.
Remark 5.13. Many prior works on CTRL derive regret or sample complexity bounds that scale
exponentially with the planning horizon T , i.e., contain terms of the form exp(T ) (Treven et al.,
2024a; Zhao et al., 2025), making the bounds vacuous for large T . In contrast, our regret bound
in equation 5.2 depends on T only logarithmically, due to the use of the total variance Varun , which
is bounded by 1 under Assumption 5.1. We emphasize that avoiding the exponential dependence
on T is made possible by analyzing the problem through the lens of total variance. Without this
perspective, one would recover an exponential dependence on T , as shown in Proposition 5.4.

Next we discuss a more refined version of regret bound and λ-total complexity of CT-MLE.
Corollary 5.14. Using the notations defined in Theorem 5.11, suppose there exists a constant d > 0
such that d ≥ max{d8βmN

, dmN
, β}. Then selecting equidistant measurements ∆n,k = ∆, the

regret is bounded as

Regret(N) ≲ log(N/δ) log(TN/∆)
(
d2 + d

√
NT∆+NVarΠ

)
.

Furthermore, to find an ϵ-optimal policy û, the λ-total complexity is bounded, up to logarithmic
factors, by

(1− λ)
(
d2

ϵ
+
d2VarΠ

ϵ2

)
+ λ

d2T 2

ϵ2
+

(1− λ)d2T∆
ϵ2

+

(
d2

ϵ
+
d2VarΠ

ϵ2

)
λT

∆
. (5.3)
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We have the following remarks about the total complexity equation 5.3.
Remark 5.15. When λ = 0, i.e., we only care about the episode complexity and ignore the mea-
surement complexity, selecting the measurement gap as ∆ = VarΠ/T yields an episode complexity
of d2VarΠ/ϵ2. This result suggests that to fully exploit the instance-dependent property of Algo-
rithm 1, it suffices to choose an instance-dependent measurement gap. In particular, achieving
instance-adaptive performance requires measuring more frequently in less stochastic environments.
Meanwhile, the measurement complexity becomes d2T 2/ϵ2, which is independent of the specific
problem instance.
Remark 5.16. When λ = 1, i.e., we focus solely on the measurement complexity and ignore the
episode complexity, the optimal choice is ∆ = T . The total measurement complexity is proportional
to d2VarΠ

ϵ2 · T∆ . To minimize this expression, ∆ must be maximized. This implies a sparse sampling
strategy where for each episode, we collect samples at the start and end points, x(0) and x(T ),
along with one additional sample at a random time t̂ ∈ [0, T ]. This result highlights a theoretical
trade-off, favoring many "measurement-cheap" episodes over a few "measurement-expensive" ones.
Interestingly, the measurement complexity asymptotically matches the complexity when episode
complexity is the sole focus λ = 0. This observation leads to an interesting conjecture: the problem
instance influences only the episode complexity, but not the measurement complexity. Verifying the
tightness of these bounds remains an open direction for future work.

6 CONCLUSION AND LIMITATIONS

Conclusion. In this work, we presented CT-MLE, a simple and general model-based algorithm
for CTRL that learns through marginal density estimation rather than explicit dynamic modeling.
Our approach leverages MLE with flexible function approximators, enabling compatibility with a
wide range of policy classes and continuous-time settings. We introduced a randomized measurement
strategy, including a Monte Carlo-style scheme that provides unbiased integral estimation while
preserving measurement efficiency. Theoretically, we established regret bounds that reveal the benefit
of instance-dependent measurement schedules, and we demonstrated that the regret can be made
primarily dependent on total reward variance, effectively decoupling it from fixed measurement grids.

Limitations. While our work provides a theoretical foundation, several gaps remain. First, we
assume access to general function approximators, but do not provide a computationally efficient,
provably correct algorithm. A key next step is to develop an adaptive method that estimates variance
online and sets measurement gaps accordingly. Second, our analysis relies on a simplified continuous-
time structure for tractability, which may not hold in practice. Future work could identify realistic
dynamics that still support Eluder-dimension-based analysis. Third, our framework assumes a known
deterministic reward and stationary policy. Extending to stochastic rewards and time-varying policies
u(t, x) would require generalizing existing tools to the joint state-time domain.

10
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ETHICS STATEMENT

Our study develops and analyzes algorithms for continuous-time reinforcement learning (CTRL)
using a theoretical SDE-based formulation and episodic learning protocol; it does not involve human
subjects, personally identifiable information, or sensitive data, and all experiments are performed in
simulator settings (standard RL environments) rather than on physical systems. The work focuses
on algorithmic methods (Algorithm 1, 2) and formal analysis, not deployment, thereby avoiding
direct safety risks in real-world control; nevertheless, we caution that applying any learned policy to
safety-critical domains (e.g., robotics, healthcare, finance) should include appropriate risk assessment,
domain-specific safeguards, and compliance checks.

REPRODUCIBILITY STATEMENT

We facilitate reproducibility by referencing precise locations of all necessary components: the formal
problem setup (Section 3) and learning protocol, the complete algorithmic specification (Algorithm 1
and randomized measurement Algorithm 2), and full theoretical details, assumptions, and proofs in
the appendix (Appendix B with supporting lemmas). Experimental settings, implementation specifics,
and environment configurations are documented in the “Numerical Experiments” appendix (Appendix
C), including “Implementation Details,” main results, and ablations, with further clarifications in
“Additional Details”. Together, these materials specify objectives, schedules, and measurement
strategies sufficient to reproduce the reported results or re-create them under equivalent simulator
conditions.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely for language polishing; all ideas, analyses, and conclusions are the authors’
own, and the authors take full responsibility for the final text.

A ADDITIONAL RESULTS FROM MAIN PAPER

A.1 PROOF OF PROPOSITION 5.4

Proof. For any deterministic policy u, we have

Varu = Ex(·)∼pf∗,g∗ (u,xini)

[∫ T

0

b(x(t), u(x(t)))− Ex(·)∼pf∗,g∗ (u,xini)

∫ T

0

b(x(t), u(x(t)))

]2
.

Applying the Cauchy–Schwarz inequality yields

Varu ≤ Ex(·)∼pf∗,g∗ (u,xini)

[∫ T

0

(b(x(t), u(x(t)))− Ex∼ptb(x, u(x)))
2
dt

]

=

∫ T

0

Ex∼pt (b(x, u(x))− Ex′∼ptb(x
′, u(x′)))

2
dt, (A.1)

where we denote pt = pf∗,g∗(u, xini, t) for simplicity.

For the integrand in equation A.1, by the Lipschitz continuity of b and u, we have

Ex∼pt (b(x, u(x))− Ex′∼ptb(x
′, u(x′)))

2

= Ex,x′∼pt (b(x, u(x))− b(x′, u(x′)))
2

≤ Ex,x′∼pt (Lb(∥x− x′∥2 + Lu∥x− x′∥2))
2

= L2
b(1 + Lu)

2Ex,x′∼pt∥x− x′∥22
= 2L2

b(1 + Lu)
2 Ex∼pt ∥x− Ex′∼ptx

′∥22 .

Define
V (t) := Ex∼pt ∥x− Ex′∼ptx

′∥22 , µ(t) := Ex∼pt [x].
Next we calculate the derivate of V (t). First, by applying Itô’s formula to ∥x(t)∥2, we have

d∥x(t)∥22 = 2⟨x(t), f(x(t), u(x(t)))⟩ dt+ ∥g(x(t), u(x(t)))∥2F dt
+ 2⟨x(t), g(x(t), u(x(t))) dw(t)⟩.

Then taking expectation for both side and using the fact Edw(t) = 0, we have
d

dt
E∥x(t)∥22 = 2E⟨x(t), f(x(t), u(x(t)))⟩+ E∥g(x(t), u(x(t)))∥2F .

Next, we have
d

dt
∥µ(t)∥22 = 2

〈
µ(t),Ef(x(t), u(x(t)))

〉
.

Then by the fact that V (t) = E∥x(t)∥22 − ∥µ(t)∥22 we obtain
d

dt
V (t) = 2E [⟨x(t)− µ(t), f(x(t), u(x(t)))− f(µ(t), u(µ(t)))⟩] + E

[
∥g(x(t), u(x(t)))∥2F

]
≤ 2E∥x(t)− µ(t)∥2 · ∥f(x(t), u(x(t)))− f(µ(t), u(µ(t)))∥2 + E∥g(x(t), u(x(t)))∥2F
≤ 2Lf (1 + Lu)V (t) +G2,

where the last inequality follows from the Lipschitz continuity of f and u.

Applying Grönwall’s lemma, we get

V (t) ≤ G2

2Lf (1 + Lu)

(
e2Lf (1+Lu)t − 1

)
≤ G2

2Lf (1 + Lu)

(
e2Lf (1+Lu)T − 1

)
. (A.2)

Substituting equation A.2 into equation A.1 completes the proof.
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A.2 EXAMPLES OF CONTINUOUS-TIME DYNAMICS WITH LOW COMPLEXITY

In this section, we present several example continuous-time dynamic classes. We first consider the
setting where F and G are finite. The following proposition shows that, under a quadratic density
model, both the eluder dimension and the bracketing number of the induced class are small.

Proof of Proposition 5.9. Eluder dimension. For simplicity, denote y := (u, x, t). By the definition
of Hellinger distance, we have

H2(pf,g(y)∥pf∗,g∗(y)) = 1−
∫
x

√
pf,g(x|y) · pf∗,g∗(x|y) dx

= 1−
∫
x

ϕ(y)⊤µf,g(x)µf∗,g∗(x)
⊤ϕ(y) dx

= 1− ϕ(y)⊤
[∫

x

µf,g(x)µf∗,g∗(x)
⊤dx

]
ϕ(y). (A.3)

Therefore, the squared Hellinger distance is a linear function of the feature matrix ϕ(y)ϕ(y)⊤ ∈ Rd×d.
Since ∥ϕ(y)∥2 ≤ 1, it follows that

∥ϕ(y)ϕ(y)⊤∥F ≤ 1. (A.4)

Now we bound the Frobenius norm of the matrix inside the integral:∥∥∥∥∫
x

µf,g(x)µf∗,g∗(x)
⊤dx

∥∥∥∥
F

≤
∫
x

∥µf,g(x)∥2 · ∥µf∗,g∗(x)∥2 dx

≤
(∫

x

∥µf,g(x)∥22dx
)1/2(∫

x

∥µf∗,g∗(x)∥22dx
)1/2

≤ B, (A.5)

where the last inequality uses the Cauchy–Schwarz inequality and the assumed boundedness of the µ
functions.

Putting together the bounds in equation A.3, equation A.4, and equation A.5, and invoking Proposi-
tion 19 in Liu et al. (2022) and Proposition 6 in Russo & Van Roy (2013), we obtain

DE1(Ψ,Y, ϵ) ≤ DE2(Ψ,Y, ϵ) ≲ d2 log

(
1 +

B2

ϵ2

)
.

Bracketing number. We take the brackets to be [l1, l2] = [pf,g(x | y), pf,g(x | y)] for each pair
(f, g). This collection is trivially a valid bracketing family, and therefore the ϵ-bracketing number is
bounded by the cardinality of the model class, i.e.,

N[](ϵ,Ψ, ∥ · ∥) ≤ |F| × |G|.

Next, we consider the setting where the classes F and G may have infinite cardinality. We show that,
even in this case, the induced model class still admits a small eluder dimension and a controlled
bracketing number.

Proof of Proposition 5.10. Eluder dimension. Define µf,g := Mf,gµ. Following the proof of
Proposition 5.9, we can verify that∥∥∥∥∫

x

µf,g(x)µf∗,g∗(x)
⊤dx

∥∥∥∥
F

≤
∫
x

∥µf,g(x)∥2 · ∥µf∗,g∗(x)∥2 dx

≤ ∥Mf,g∥F ∥Mf∗,g∗∥F
∫
x

∥µ(x)∥2 · ∥µ(x)∥2 dx

17
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≤ B3/2

∫
x

∥µ(x)∥1dx

≤ dB3/2,

where we use the fact that each [µ(x)]i is a density function. Thus we can conclude that

d1/ϵ ≲ d2 log

(
1 +

d2B3

ϵ2

)
.

Bracketing number. We now construct an ϵ-bracketing set. For each pair (l1, l2), we consider
brackets of the form

l =
(
ϕ(u, x, t)⊤Ml µ(x

′)
)2
, Ml = ([Ml]i,j) =


k1,1 ζ k1,2 ζ · · · k1,d ζ
k2,1 ζ k2,2 ζ · · · k2,d ζ

...
...

. . .
...

kd,1 ζ kd,2 ζ · · · kd,d ζ

 ,

ζ :=
ϵ

3d2B
, ki,j ∈

{
−
⌈
B/ζ

⌉
, −
⌈
B/ζ

⌉
+ 1, . . . ,

⌈
B/ζ

⌉}
⊂ Z.

For any matrix M , define its upper bracket matrix M̃ by [M̃ ]i,j := ⌈[M ]i,j/ζ⌉ · ζ. By construction,
[M̃ ]i,j ≥ [M ]i,j , and therefore

(ϕ(u, x, t)⊤M̃ µ(x′))2 =

∑
i,j

[ϕ(u, x, t)]i,j [M̃ ]i,j [µ(x
′)]i,j

2

≥

∑
i,j

[ϕ(u, x, t)]i,j [M ]i,j [µ(x
′)]i,j

2

(A.6)

= (ϕ(u, x, t)⊤M µ(x′))2.

We now bound the bracket width. For any u, x, t,∫
x′

∣∣(ϕ(u, x, t)⊤M̃ µ(x′))2 − (ϕ(u, x, t)⊤M µ(x′))2
∣∣dx′

=

∫
x′

(
ϕ(u, x, t)⊤M̃ µ(x′) + ϕ(u, x, t)⊤M µ(x′)

) ∣∣∣∣∣∣
∑
i,j

[ϕ(u, x, t)]i,j
(
[M̃ ]i,j − [M ]i,j

)
[µ(x′)]i,j

∣∣∣∣∣∣ dx′
≤
√
B
(
2
√
B + d2ζ2

)
ζ ·
∫
x′

∑
i,j

[µ(x′)]i,j dx
′

≤ d2
√
B
(
2
√
B + d2ζ2

)
ζ

≤ ϵ. (A.7)

Thus, the constructed family forms an ϵ-bracketing set. Its cardinality is bounded by(
2B

ζ

)d×d
= O

(
3d2B3

ϵ

)d×d
. (A.8)

A.3 CONSTRUCTION EXAMPLE FOR PROPOSITION 5.9

The quadratic form presented in Proposition 5.9 is well-motivated and can be constructed explicitly.
For simplicity, let us consider a quadratic density function p(y | t) that is independent of policy u
and state x. Let us assume p(y | t) = (ϕ(t)⊤µ(y))2 with ϕ(t), µ(y) ∈ R2. Then we can take ϕ(t) =
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(cos(t), sin(t))⊤ and µ(y) = (c1e
−y2 , c2ye

−y2)⊤, where c1 = (2/π)1/4 and c2 = 2(2/π)1/4. The
resulting density is

p(y | t) =
[
(2/π)1/4 cos(t)e−y

2

+ 2(2/π)1/4 sin(t)ye−y
2
]2
.

This defines a valid, time-evolving probability density because the basis functions in µ(y) are
orthonormal, satisfying

∫
µi(y)µj(y) dy = δij , and the coefficients in ϕ(t) satisfy cos2(t)+sin2(t) =

1, ensuring
∫
p(y | t) dy = 1 for all t.

The drift f(y, t) and diffusion g(y, t) of an SDE generating this density can be obtained from the
Fokker–Planck equation ∂tp = −∂y(fp) + 1

2∂
2
y(g

2p). Setting g = 1, we have

f(y, t) =
1

p(y | t)

∫ y

−∞

[
1

2

∂2p

∂z2
− ∂p

∂t

]
dz.

Although the resulting drift does not have a simple closed form, it can be computed explicitly given
p(y | t). In this sense, the SDE with (f, 1) provides a valid example satisfying Proposition 5.9.

Additionally, though classical SDEs do not directly yield the quadratic form of Proposition 5.9, we
can identify related structures in well-known processes. The classical Ornstein–Uhlenbeck (OU)
process provides a case that satisfies a linear form p(y | t) = ϕ(t)⊤µ(y). Its spectral representation
(see Chapter 5.4 of Risken & Frank (1996)) is given by

p(y | t, y0) =
∞∑
n=0

eλntψn(y)ψn(y0),

where λn = −nγ with γ > 0 denoting the mean-reversion rate, and {ψn(y)} are the Hermite
eigenfunctions of the corresponding OU generator. This representation constitutes a linear inner
product in an infinite-dimensional space, illustrating that such structures arise naturally even when
the SDE itself has simple drift and diffusion coefficients.

A.4 DERIVATION FOR EQUATION 4.1

Starting from the definition of the value function:

Vf,g(u, x, s) := Ex(·)∼pf,g(u,xini)

[∫ T

t=s

b(x(t), u(x(t))) dt

∣∣∣∣x(s) = x

]

We split the time integral at s+∆:

Vf,g(u, x, s) = Ex(·)∼pf,g(u,xini)

[∫ s+∆

t=s

b(x(t), u(x(t))) dt+

∫ T

t=s+∆

b(x(t), u(x(t))) dt

∣∣∣∣x(s) = x

]

For an Itô process, the future evolution {x(t)}t≥s+∆ depends only on x(s+∆) and is conditionally
independent of the past {x(t)}t≤s given x(s+∆). Therefore, we can apply the tower property of
conditional expectation:

Vf,g(u, x, s) = Ex(·)∼pf,g(u,x)

[∫ s+∆

t=s

b(x(t), u(x(t))) dt

]

+ Ex′∼pf,g(u,x,∆)

[
Ex(·)∼pf,g(u,x′)

[∫ T

t=s+∆

b(x(t), u(x(t))) dt

∣∣∣∣x(s+∆) = x′

]]

By Markov property of the Itô SDE and the definition of the value function Vf,g(u, x′, s+∆), we
obtain:
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Vf,g(u, x, s) = Ex(·)∼pf,g(u,x)

[∫ ∆

0

b(x(t), u(x(t))) dt

]
+ Ex′∼pf,g(u,x,∆) [Vf,g(u, x

′, s+∆)] ,

which is precisely equation 4.1.
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B PROOF OF MAIN THEOREM

We first define several notations for convenience. Let

p∗n(x, t) := pf∗,g∗(un, x, t), pn(x, t) := pfn,gn(un, x, t),

V ∗
n (x, t) := Vf∗,g∗(un, x, t), Vn(x, t) := Vfn,gn(un, x, t).

B.1 AUXILIARY LEMMAS

The following lemma shows that the difference in expectations between two distributions can be
bounded by the variance of one distribution and their Hellinger distance, which plays a key role in
deriving our variance-dependent regret bound.

Lemma B.1 (Wang et al. 2024b;a). Let p, q ∈ ∆([0, 1]) be two probability distributions over [0, 1].
Define the variance of p as

VaRp := Ex∼p
[
(x− Ex∼p[x])2

]
.

Then the following inequality holds:

|Ex∼p[x]− Ex∼q[x]| ≲
√
VaRp ·H2(p ∥ q) +H2(p ∥ q).

The following lemma provides a concentration inequality for martingale difference sequences without
boundedness assumptions, which is essential for handling heavy-tailed or unbounded noise in our
analysis.

Lemma B.2 (Unbounded Freedman’s inequality, Dzhaparidze & Van Zanten (2001); Fan et al. (2017)).
Let {xi}ni=1 be a stochastic process adapted to a filtration {Gi}ni=1, where Gi = σ(x1, . . . , xi).
Suppose E[xi | Gi−1] = 0 and E[x2i | Gi−1] <∞ almost surely. Then, for any a, v, y > 0, we have

P

(
n∑
i=1

xi > a,

n∑
i=1

(
E[x2i | Gi−1] + x2i · 1{|xi| > y}

)
< v2

)
≤ exp

(
−a2

2(v2 + ay/3)

)
.

Equivalently, with probability at least 1− δ, the following high-probability bound holds:

n∑
i=1

xi ≤

√√√√2

n∑
i=1

(E[x2i | Gi−1] + x2i · 1{|xi| > y}) log(1/δ) + y

3
log(1/δ).

The next lemma bounds the sum of truncated random variables in terms of their conditional expecta-
tions, which is useful for controlling tail contributions in martingale-adapted processes.

Lemma B.3 (Lemma 8, Zhang et al. 2022). Let {xi}ni=1 be a nonnegative stochastic process adapted
to a filtration {Gi}i≥1, i.e., xi ≥ 0 almost surely. Then, for any δ ∈ (0, 1), with probability at least
1− δ, we have

n∑
i=1

min{xi, y} ≤ 4y log(4/δ) + 4 log(4/δ)

n∑
i=1

E[xi | Gi−1].

We also include the following two auxiliary lemmas that will be used in our analysis.

Lemma B.4 (Lemma 11, Wang et al. 2024b). Let G > 0 and a < G/2 be positive constants. Let
{Ci}Mi=0 be a sequence of positive real numbers, where M = ⌈log2(H/G)⌉, satisfying:

• Ci ≤ 2iG+
√
aCi+1 + a for all i ≥ 0;

• Ci ≤ H for all i ≥ 0, where H > 0 is a positive constant.

Then it holds that C0 ≤ 4G.

Lemma B.5. For any random variable X ∈ [0, 1], we have Var(X2) ≤ 4Var(X).
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Proof. Let Y be an independent copy of X . Then,

Var(X2) = 1
2 E[(X

2 − Y 2)2] = 1
2 E[(X − Y )2(X + Y )2] ≤ 1

2 · 4E[(X − Y )2] = 2E[(X − Y )2],

where we used (X + Y )2 ≤ 4 since X,Y ∈ [0, 1].

Next, we observe:

E[(X − Y )2] = E[X2] + E[Y 2]− 2E[X]E[Y ] = 2E[X2]− 2E[X]2 = 2Var(X),

where the last equality follows from E[X] = E[Y ] and E[X2] = E[Y 2]. Combining both steps, we
get

Var(X2) ≤ 2 · 2Var(X) = 4Var(X),

which concludes the proof.

B.2 LEMMAS ON CONFIDENCE SETS

In this section we prove several lemmas about confidence sets established in Algorithm 1. We first
introduce several technical lemmas.

Lemma B.6 (Lemma E.2, Wang et al. 2023). Let p1 : Y → ∆(X ) and p2 : Y × X →
R+ satisfying supy∈Y

∫
x
p2(y, x) dx ≤ s, then for any distribution D ∈ ∆(Y), we have

Ey∼D
[
H2(p1(y) ∥ p2(y, ·))

]
≤ (s− 1)− 2 logEy∼D, x∼p1(y) exp

(
− 1

2 log
(
p1(y, x)/p2(y, x)

))
.

Lemma B.7 (Lemma E.3, Wang et al. 2023). Let Υ be a class of conditional distributions. Consider
a dataset D = {yi, xi}ni=1 generated as follows: each yi ∼ Di, where Di may depend on the past
history (y1:i−1, x1:i−1), and each xi is drawn according to the ground-truth conditional distribution
p⋆(yi, ·). Fix δ ∈ (0, 1). Then, with probability at least 1− δ, for every p ∈ Υ we have
n∑
i=1

Ey∼Di
[
H2(p(y, ·) ∥ p⋆(y, ·))

]
≤ 6nϵ + 2

n∑
i=1

log

(
p⋆(yi, xi)

p(yi, xi)

)
+ 8 log

(N[](ϵ,Υ, ∥ · ∥)
δ

)
.

Here, N[](ϵ,Υ, ∥ · ∥) denotes the ϵ-bracketing number defined in Definition 5.6.

Moreover, rearranging the above inequality yields
n∑
i=1

log

(
p(yi, xi)

p⋆(yi, xi)

)
≤ 3nϵ + 4 log

(
N[](ϵ,Υ, ∥ · ∥)

δ

)
.

Proof. First, let Υ̃ denote an ϵ-bracketing of Υ. Applying Lemma 24 of Agarwal et al. (2020) to the
function class Υ̃ and using the Chernoff method, we obtain that, with probability at least 1− δ, for
all p̃ ∈ Υ̃,

− logED′ exp(L(p̃(D), D′))︸ ︷︷ ︸
(i)

≤ −L(p̃(D), D) + 2 log
(
N[](ϵ,Υ, ∥ · ∥) /δ

)︸ ︷︷ ︸
(ii)

.

Next, fix any p ∈ Υ and choose p̃ ∈ Υ̃ to be its upper bracket (i.e., p ≤ p̃). Set

L(p,D) =

n∑
i=1

− 1
2 log(p

⋆(yi, xi)/p(yi, xi)) .

Then the right-hand side of (ii) becomes

(ii) = 1
2

n∑
i=1

log(p⋆(yi, xi)/p̃(yi, xi)) + 2 log
(
N[](ϵ,Υ, ∥ · ∥) /δ

)
≤ 1

2

n∑
i=1

log(p⋆(yi, xi)/p(yi, xi)) + 2 log
(
N[](ϵ,Υ, ∥ · ∥) /δ

)
.
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Since H is a metric,
n∑
i=1

Ey∼DiH2(p(y, ·), p⋆(y, ·)) ≤
n∑
i=1

Ey∼Di

(
H(p(y, ·), p̃(y, ·)) +H(p̃(y, ·), p⋆(y, ·))

)2
≤ 2

n∑
i=1

Ey∼DiH2(p(y, ·), p̃(y, ·))︸ ︷︷ ︸
(iii)

+2

n∑
i=1

Ey∼DiH2(p̃(y, ·), p⋆(y, ·))︸ ︷︷ ︸
(iv)

.

By Definition 5.6,
∫
x
|p̃(y, x)− p(y, x)| ≤ ϵ for all y. Hence,

(iii) =

n∑
i=1

Ey∼DiH2(p(y, ·), p̃(y, ·))

≤
n∑
i=1

Ey∼Di2

∫
x

∣∣p(y, x)− p̃(y, x)∣∣ dx
≤ 2nϵ.

Apply Lemma B.6 with p1 = p⋆ and p2 = p̃. Note that

sup
y∈Y

∫
x

p̃(y, x) ≤ sup
y∈Y

∫
x

p(y, x) + sup
y∈Y

∫
x

|p(y, x)− p̃(y, x)| ≤ 1 + ϵ.

Setting s = 1 + ϵ, we obtain

(iv) = nϵ− 2

n∑
i=1

logEy,x∼p⋆(y,·) exp
(
− 1

2 log(p
⋆(y, x)/p̃(y, x))

)
= nϵ− 2

n∑
i=1

logEy∼Di exp
(
− 1

2 log(p
⋆(y, xi)/p̃(y, xi))

)
= nϵ− 2 logEy,x∼D′

[
exp

(
n∑
i=1

− 1
2 log(p

⋆(yi, xi)/p̃(yi, xi))

) ∣∣∣D]
= nϵ+ 2(i).

Combining (iii) and (iv),
n∑
i=1

Ey∼DiH2(p(y, ·), p⋆(y, ·)) ≤ 6nϵ+ 4(i).

Since (i) ≤ (ii), substituting (ii) gives
n∑
i=1

Ey∼DiH2(p(y, ·), p⋆(y, ·)) ≤ 6nϵ+ 4
[
−L(p̃(D), D) + 2 log

(
N[](ϵ,Υ, ∥ · ∥) /δ

)]
.

Then based on Lemma B.7, we now introduce lemmas about confidence set Pn that are instrumental
for proving Theorems 5.11.

Lemma B.8. With probability at least 1− δ, the following holds for all n ∈ [N ]: (f∗, g∗) ∈ Pn, and

n−1∑
i=1

mi−1∑
k=0

H2
(
pfn,gn(ui, xi(t

k
i ),∆i,k) ∥ pf∗,g∗(ui, xi(t

k
i ),∆i,k)

)
≤ 4β, (B.1)

where β = 5 log(N · C3mN
/δ). Here C1/ϵ denotes the shorthand notation defined in Definition 5.6.
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Proof. We apply Lemma B.7 to the function class F × G, using delta distributions Di,k centered at
(ui, xi(t

k
i ),∆i,k), p = pfn,gn , ϵ = 1/(3mN ). This guarantees that (f∗, g∗) ∈ Pn. For equation B.1,

recall that fn, gn ∈ Pn, which guarantees

sup
(f,g)∈F×G

n−1∑
i=1

mi−1∑
k=0

log
(
pf,g(xi(t

k+1
i ) | ui, xi(tki ),∆i,k)/pfn,gn(xi(t

k+1
i ) | ui, xi(tki ),∆i,k)

)
≤ β.

Therefore, by Lemma B.7, we have

n−1∑
i=1

mi−1∑
k=0

H2
(
pfn,gn(ui, xi(t

k
i ),∆i,k)

∥∥ pf∗,g∗(ui, xi(t
k
i ),∆i,k)

)
≤ 6mN ϵ+ 2β + 8 log

(N[](ϵ,Υ, ∥ · ∥)
δ

)
≤ 4β. (B.2)

Next, we present a key lemma that uses the eluder dimension to bound the accumulated Hellinger
distances.

Lemma B.9. Let EB.8 denote the event described in Lemma B.8. Then, under event EB.8, there
exists a subset N ⊆ [N ] such that:

• |N | ≤ 13 log2(4βmN ) · d8βmN
;

• For each n ∈ [N ], the indicator n ∈ N corresponds to a stopping time;

• The cumulative Hellinger distance outside N is bounded:

∑
i∈[N ]\N

mi−1∑
k=0

H2
(
pfi,gi(ui, xi(t

k
i ),∆i,k) ∥ pf∗,g∗(ui, xi(t

k
i ),∆i,k)

)
≤ 3dmN

+ 7dmN
β log(mN ).

Proof. We apply Lemma 6 from Wang et al. (2024b), using the distribution class pf,g , the input space
Π×X × [T ], and the function class Ψ.

B.3 LEMMAS ABOUT REGRET DECOMPOSITION

The following lemma provides a decomposition of the regret into four interpretable components
based on differences between the learned and ground-truth dynamics.

Lemma B.10 (Simulation Lemma, Agarwal et al. 2019). At episode n, the following decomposition
holds:

Vn(xini, 0)− V ∗
n (xini, 0) = I0,n +

mn−1∑
k=0

(
Ik1,n + Ik2,n + Ik3,n + Ik4,n

)
,

where the individual terms are defined as follows:

I0,n :=

∫ T

0

b(xn(t), un(t)) dt− V ∗
n (xini, 0),

Ik1,n := Ex∼p∗n(xn(tkn),∆n,k)Vn(x, t
k+1
n )− Vn(xn(tk+1

n ), tk+1
n ),

Ik2,n := Ex(·)∼p∗n(xn(tkn))

[∫ ∆n,k

0

b(x(t), un(t)) dt

]
−
∫ tk+1

n

tkn

b(xn(t), un(t)) dt,

Ik3,n := Ex∼pn(xn(tkn),∆n,k)Vn(x, t
k+1
n )− Ex∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n ),

Ik4,n := Ex(·)∼pn(xn(tkn))

[∫ ∆n,k

0

b(x(t), un(t)) dt

]
− Ex(·)∼p∗n(xn(tkn))

[∫ ∆n,k

0

b(x(t), un(t)) dt

]
.
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Proof. We apply a telescoping argument over the discretization grid {tkn}
mn
k=0. From the definition of

the value function, we have

Vn(xini, 0) = Ex(·)∼pn(xini)

[∫ T

0

b(x(t), un(t)) dt

]

= Ex(·)∼pn(xini)

[∫ t1n

0

b(x(t), un(t)) dt

]
+ Ex∼pn(xini,∆n,0)Vn(x, t

1
n).

Subtracting the realized cumulative reward yields

Vn(xini, 0)−
∫ T

0

b(xn(t), un(t)) dt

= Ex(·)∼pn(xini)

[∫ t1n

0

b(x(t), un(t)) dt

]
−
∫ t1n

0

b(xn(t), un(t)) dt︸ ︷︷ ︸
I02,n+I

0
4,n

+ Ex∼pn(xini,∆n,0)Vn(x, t
1
n)− Ex∼p∗n(xini,∆n,0)Vn(x, t

1
n)︸ ︷︷ ︸

I03,n

+ Ex∼p∗n(xini,∆n,0)Vn(x, t
1
n)− Vn(xn(t1n), t1n)︸ ︷︷ ︸

I01,n

+ Vn(xn(t
1
n), t

1
n)−

∫ T

t1n

b(xn(t), un(t)) dt. (B.3)

By the Markov property of the Itô SDE, we have

Ex(·)∼pf,g(u,x)

[∫ tk+1
n

tkn

b(x(t), u(t)) dt

]
= Ex(·)∼pf,g(u,x)

[∫ ∆n,k

0

b(x(t), u(t)) dt

]
.

Using this identity recursively up to some 0 ≤ m† ≤ mn leads to the expression

Vn(xini, 0)−
∫ T

0

b(xn(t), un(t)) dt

=

m†−1∑
k=0

(
Ik1,n + Ik2,n + Ik3,n + Ik4,n

)
+ E

x(·)∼pn(xn(tm†
n ))

∫ tm
†+1

n

tm
†

n

b(x(t), u(t)) dt

− ∫ tm
†+1

n

tm
†

n

b(xn(t), un(t)) dt︸ ︷︷ ︸
Im

†
2,n+I

m†
4,n

+ E
x∼pn(xn(tm†

n ),∆
n,m† )

Vn(x, t
m†+1
n )− E

x∼p∗n(xn(tm
†

n ),∆
n,m† )

Vn(x, t
m†+1
n )︸ ︷︷ ︸

Im
†

3,n

+ E
x∼p∗n(xn(tm

†
n ),∆

n,m† )
Vn(x, t

m†+1
n )− Vn(xn(tm

†+1
n ), tm

†+1
n )︸ ︷︷ ︸

Im
†

1,n

+ Vn(xn(t
m†+1
n ), tm

†+1
n )−

∫ T

tm
†+1

n

b(xn(t), un(t)) dt. (B.4)

Applying equation B.4 with m† = mn − 1 and noting that tmnn = T and Vn(·, T ) = 0, we obtain

Vn(xini, 0)−
∫ T

0

b(xn(t), un(t)) dt =

mn−1∑
k=0

(
Ik1,n + Ik2,n + Ik3,n + Ik4,n

)
,
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which completes the proof.

Lemma B.11. Let I0,n, Ik1,n, . . . , I
k
3,n be terms introduced in Lemma B.10. Let Ñ ⊆ [N ] be an

episode index set satisfying Ñ ⊆ [N ] \N and satisfying n ∈ Ñ is a stopping time. Then under event
EB.8, with probability at least 1− 4δ, the following bounds hold:

∑
n∈Ñ

I0,n ≲

√√√√log(1/δ)

N∑
n=1

Varunf∗,g∗ + log(1/δ),

∑
n∈Ñ

mn−1∑
k=0

Ik1,n ≲

√√√√∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
· log(1/δ) + log(1/δ),

∑
n∈Ñ

mn−1∑
k=0

Ik2,n ≲

√√√√ N∑
n=1

∆2
n log(1/δ),

∑
n∈Ñ

m−1∑
k=0

|Ik3,n| ≲

√√√√dmN
β log(mN )

∑
n∈Ñ

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

]
+ dmN

β log(mN ).

Proof. First, by Azuma-Bernstein inequality, with probability at least 1− δ, we have∑
n∈Ñ

I0,n =

N∑
n=1

1(n ∈ Ñ )

(∫ T

t=0

b(xn(t), un(t))dt− Ex(·)∼p∗n(xini)

[ ∫ T

t=0

b(x(t), u(t))dt

])

≲

√√√√log(1/δ)

N∑
n=1

Varunf∗,g∗ + log(1/δ).

Next, by definition,

Ik1,n := Ex∼p∗n(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
− Vn(xn(tk+1

n ), tk+1
n ).

Each Ik1,n is a zero-mean random variable whose variance is:

Vx∼p∗n(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
≤ 1,

since Vn ∈ [0, 1].

We apply Bernstein’s inequality for zero-mean, bounded (≤ 1) random variables. We have with
probability at least 1− δ,∑
n∈Ñ

mn−1∑
k=0

Ik1,n =

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

Ik1,n

≲

√√√√ N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
· log(1/δ) + log(1/δ).

=

√√√√∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
· log(1/δ) + log(1/δ).

Next, we recall the definition:

Ik2,n := Ex(t)∼p∗n(xn(tkn))

[∫ ∆n,k

0

b(x(t), un(t))dt

]
−
∫ tk+1

n

tkn

b(xn(t), un(t))dt.

Each Ik2,n is a martingale difference and satisfies |Ik2,n| ≤ 2∆n,k, since b(x, u) ≤ 1 by Assump-
tion 5.1.
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We apply the Azuma-Hoeffding inequality for bounded martingale differences. With probability at
least 1− δ: ∑

n∈Ñ

mn−1∑
k=0

Ik2,n =

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

Ik2,n

≲

√√√√ N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

∆2
n,k log(1/δ)

≤

√√√√ N∑
n=1

∆2
n log(1/δ).

Finally, by Assumption 5.1, the stage-wise reward is bounded in [0, 1]. Leveraging Lemma B.1, we
can bound

|Ex∼pn(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
− Ex∼p∗n(xn(tkn),∆n,k)

[
Vn(x, t

k+1
n )

]
|

in terms of the corresponding variance and squared Hellinger distance:

∑
n∈Ñ

mn−1∑
k=0

|Ik3,n|

=

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

|Ex∼pn(xn(tkn),∆n,k)
[
Vn(x, t

k+1
n )

]
− Ex∼p∗n(xn(tkn),∆n,k)

[
Vn(x, t

k+1
n )

]
|

≲
N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

[√
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n ) ·H2

(
p∗n(xn(t

k
n),∆n,k)∥pn(xn(tkn),∆n,k)

)]

+

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

[
H2
(
p∗n(xn(t

k
n),∆n,k)∥pn(xn(tkn),∆n,k)

)]
. (B.5)

Applying the Cauchy–Schwarz inequality to equation B.5 yields

∑
n∈Ñ

mn−1∑
k=0

|Ik3,n|

≤

√√√√ N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

]

·

√√√√ N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

[
H2
(
p∗n(xn(t

k
n),∆n,k)∥pn(xn(tkn),∆n,k)

)]

+

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

[
H2
(
p∗n(xn(t

k
n),∆n,k)∥pn(xn(tkn),∆n,k)

)]

≤

√√√√dmN
β log(mN )

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

]
+ dmN

β log(mN )

=

√√√√dmN
β log(mN )

∑
n∈Ñ

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

]
+ dmN

β log(mN ),

where the final inequality follows directly from Lemma B.9.
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B.4 LEMMAS TO CONTROL TOTAL VARIANCE

The following lemma provides an upper bound on the cumulative variance of the value function
estimates Vn(x, tk+1

n ) in terms of the variances of their reference optimal values V ∗
n (x, t

k+1
n ), an

eluder-dimension-dependent complexity term, and an additional error term.

Lemma B.12. Let Ñ ⊆ [N ] be the episode index set defined in Lemma B.11. Under the event EB.11,
with probability at least 1− δ, we have∑

n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t
k+1
n )

≲
∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n ) + dmN

β log(mN ) +
∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|.

Proof. First we have ∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t
k+1
n )

≤ 2
∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n )

+ 2
∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V̂n(x, t
k+1
n ), (B.6)

where V̂n(x, t) := Vn(x, t)− V ∗
n (x, t). Next we focus on bound the second term. We introduce a

more general high order momentum Ci, i = 0, . . . , log(mN ), where

Ci :=
∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V̂
2i

n (x, tk+1
n ).

Then we have

Ci =
∑
n∈Ñ

mn−1∑
k=0

Ex∼p∗n(xn(tkn),∆n,k)V̂
2i+1

n (x, tk+1
n )− [Ex∼p∗n(xn(tkn),∆n,k)V̂

2i

n (x, tk+1
n )]2

=
∑
n∈Ñ

mn−1∑
k=0

Ex∼p∗n(xn(tkn),∆n,k)V̂
2i+1

n (x, tk+1
n )− V̂ 2i+1

n (xn(t
k+1
n ), tk+1

n )

− [Ex∼p∗n(xn(tkn),∆n,k)V̂
2i

n (x, tk+1
n )]2 + V̂ 2i+1

n (xn(t
k+1
n ), tk+1

n )

≤
∑
n∈Ñ

mn−1∑
k=0

Ex∼p∗n(xn(tkn),∆n,k)V̂
2i+1

n (x, tk+1
n )− V̂ 2i+1

n (xn(t
k+1
n ), tk+1

n )︸ ︷︷ ︸
Jk1,n,i

−[Ex∼p∗n(xn(tkn),∆n,k)V̂
2i

n (x, tk+1
n )]2 + V̂ 2i+1

n (xn(t
k
n), t

k
n)︸ ︷︷ ︸

Jk2,n,i

, (B.7)

where the last line holds since we move the index one step earlier and we use the fact V̂n(x, tmn ) = 0.

Next, for Jk1,n,i, by Azuma-Bernsetin inequality, we have with probability at least 1 − δ for all
i = 0, . . . , log(mN ),∑

n∈Ñ

mn−1∑
k=0

Jk1,n,i
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=

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

Jk1,n,i

≲

√√√√∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V̂
2i+1

n (x, tk+1
n ) log(log(mN )/δ) + log(log(mN )/δ)

≤
√
Ci+1 log(log(mN )/δ) + log(log(mN )/δ). (B.8)

For Jk2,n,i, we have

Jk2,n,i

= [V̂ 2i

n (xn(t
k
n), t

k
n)− Ex∼p∗n(xn(tkn),∆n,k)V̂

2i

n (x, tk+1
n )][V̂ 2i

n (xn(t
k
n), t

k
n) + Ex∼p∗n(xn(tkn),∆n,k)V̂

2i

n (x, tk+1
n )]

≤ [V̂ 2i

n (xn(t
k
n), t

k
n)− [Ex∼p∗n(xn(tkn),∆n,k)V̂

2i−1

n (x, tk+1
n )]2][V̂ 2i

n (xn(t
k
n), t

k
n) + Ex∼p∗n(xn(tkn),∆n,k)V̂

2i

n (x, tk+1
n )]

≤
i∏

j=0

[V̂ 2i

n (xn(t
k
n), t

k
n) + Ex∼p∗n(xn(tkn),∆n,k)V̂n(x, t

k+1
n )] · |V̂n(xn(tkn), tkn)− Ex∼p∗n(xn(tkn),∆n,k)V̂n(x, t

k+1
n )|

≤ 2i+1|V̂n(xn(tkn), tkn)− Ex∼p∗n(xn(tkn),∆n,k)V̂n(x, t
k+1
n )|, (B.9)

where we use the fact that EX2 ≥ [EX]2. Then taking summation of equation B.9 over n ∈ Ñ and
k, we have

2−(i+1) ·
∑
n∈Ñ

mn−1∑
k=0

Jk2,n,i

≤
∑
n∈Ñ

mn−1∑
k=0

|V̂n(xn(tkn), tkn)− Ex∼p∗n(xn(tkn),∆n,k)V̂n(x, t
k+1
n )|

=
∑
n∈Ñ

mn−1∑
k=0

|Vn(xn(tkn), tkn)− V ∗
n (xn(t

k
n), t

k
n)− Ex∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

+ Ex∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n )|

=
∑
n∈Ñ

mn−1∑
k=0

∣∣∣∣Ex∼pn(xn(tkn),∆n,k)Vn(x, tk+1
n )− Ex∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )︸ ︷︷ ︸

Ik3,n

+ Ex(t)∼pn(xn(tkn))
[ ∫ ∆n,k

t=0

b(x(t), un(t))dt

]
− Ex(t)∼p∗n(xn(tkn))

[ ∫ ∆n,k

t=0

b(x(t), un(t))dt

]
︸ ︷︷ ︸

Ik4,n

∣∣∣∣

≤

√√√√dmN
β log(mN )

( ∑
n∈Ñ

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

])

+ dmN
β log(mN ) +

∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|, (B.10)

where the last inequality holds due to the upper bounds of |Ik3,n| obtained in Lemma B.11. Combining
equation B.7, equation B.8 and equation B.10, we have a < G/2, Ci ≤ 2iG +

√
aCi+1 + a and

Ci ≤ H = mN , where

G :=

√√√√dmN
β log(mN )

( ∑
n∈Ñ

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

])
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+ dmN
β log(mN ) +

∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|,

a := log(log(mN )/δ).

Therefore, by Lemma B.4, we have

C0 ≲ G. (B.11)

Finally, substituting equation B.11 back to equation B.6, we have

∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t
k+1
n )

≲
∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n ) + dmN

β log(mN ) +
∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|

+

√√√√dmN
β log(mN )

( ∑
n∈Ñ

mn−1∑
k=0

[
Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t

k+1
n )

])
.

Using the fact that x ≲
√
ax+ b⇒ x ≲ a+ b, we obtain our final bound.

The following lemma bounds the cumulative variance of the optimal value function V ∗
n by the

measurement gaps.
Lemma B.13. With probability at least 1− δ, for all n ∈ [N ], we have

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n ) ≲ log(N/δ) +

√
log(N/δ) max

1≤n≤N
∆2
n. (B.12)

Proof. Fix any n ∈ [N ]. For simplicity, define Jn :=
∑mn−1
k=0 Vx∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n ). We

begin by expanding the variance:

Jn =

mn−1∑
k=0

[
Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )2 −

(
Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )

)2]
≤
mn−1∑
k=0

{
Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )2 − V ∗

n (xn(t
k+1
n ), tk+1

n )2︸ ︷︷ ︸
Jk1,n

+ V ∗
n (xn(t

k
n), t

k
n)

2 −
(
Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )

)2︸ ︷︷ ︸
Jk2,n

}
, (B.13)

where the inequality uses the monotonicity V ∗
n (xn(t

k+1
n ), tk+1

n ) ≤ V ∗
n (xn(t

k
n), t

k
n).

By the Azuma–Bernstein inequality, with probability at least 1− δ/N ,

mn−1∑
k=0

Jk1,n ≲

√√√√mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n )2 · log(N/δ) + log(N/δ)

≤ 2

√√√√mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n ) · log(N/δ) + log(N/δ)

= 2
√
Jn log(N/δ) + log(N/δ), (B.14)

where the second inequality follows from Lemma B.5.
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For Jk2,n, using equation 4.1 and the Markov property of Itô’s SDE, we write

Jk2,n =
[
V ∗
n (xn(t

k
n), t

k
n)− Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )

]
·
[
V ∗
n (xn(t

k
n), t

k
n) + Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )

]
=

[
Ex(·)∼p∗n(xn(tkn))

∫ ∆n,k

t=0

b(x(t), u(t))dt

]
·
[
V ∗
n (xn(t

k
n), t

k
n) + Ex∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n )

]
≲ Ex(·)∼p∗n(xn(tkn))

∫ ∆n,k

t=0

b(x(t), u(t))dt, (B.15)

since V ∗
n ≤ 1. Hence, with probability at least 1− δ/N , we have

mn−1∑
k=0

Jk2,n ≲
mn−1∑
k=0

{∫ tk+1
n

tkn

b(xn(t), un(t))dt

+

[
Ex(·)∼p∗n(xn(tkn))

∫ ∆n,k

0

b(x(t), u(t))dt−
∫ tk+1

n

tkn

b(xn(t), un(t))dt

]}

≤ 1 +

mn−1∑
k=0

[
Ex(·)∼p∗n(xn(tkn))

∫ ∆n,k

0

b(x(t), u(t))dt−
∫ tk+1

n

tkn

b(xn(t), un(t))dt

]
≲ 1 +

√
∆2
n log(N/δ), (B.16)

where the second inequality follows from Assumption 5.1, and the third comes from Azuma-Hoeffding

inequality using the bound
∫ tk+1

n

tkn
b(x(t), u(t))dt ≤ ∆n,k.

Substituting equation B.14 and equation B.16 into equation B.13, and replacing each individual
confidence level 1 − δ/N in equation B.14 and equation B.16 with 1 − δ/(2N) (which does not
affect the order of the bounds), we can apply a union bound to obtain an overall high-probability
guarantee of 1− δ. Consequently, with probability at least 1− δ, for all n ∈ [N ],

Jn ≲
√
Jn log(N/δ) + 1 +

√
∆2
n log(N/δ)

⇒ Jn ≲ log(N/δ) +
√
∆2
n log(N/δ) ≤ log(N/δ) +

√
log(N/δ) max

1≤n≤N
∆2
n.

The following lemma provides a global bound on the cumulative variance of the optimal value
functions V ∗

n over all episodes. It shows that this quantity is controlled by the total variance and
measurement gaps.

Lemma B.14. Under event EB.13, with probability at least 1− δ, we have

N∑
n=1

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n ) ≲ log2(N/δ)

(
1 +

N∑
n=1

Varun +

N∑
n=1

∆2
n

)
.

Proof. We define Jn :=
∑mn−1
k=0 Vx∼p∗n(xn(tkn),∆n,k)V

∗
n (x, t

k+1
n ) following Lemma B.13. Then by

equation B.12 we have

Jn ≲ log(N/δ) +
√

log(N/δ) max
1≤n≤N

∆2
n.

Next we prove that the conditional expectation of Jn can be bounded. First, following equation 4.1,

V ∗
n (x, t) = Ex(·)∼p∗n(x)

[∫ T

t

b(x(t), u(t))dt

]
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= Ex(·)∼p∗n(x)
[∫ t+∆

t

b(x(t), u(t))dt

]
+ Ex′∼p∗n(x,∆)V

∗
n (x

′, t+∆)

= Ex(·)∼p∗n(x)
[∫ ∆

0

b(x(t), u(t))dt

]
+ Ex′∼p∗n(x,∆)V

∗
n (x

′, t+∆). (B.17)

Then, we have

Varun = Ex(·)∼p∗n(xini)

[
mn−1∑
k=0

∫ tk+1
n

tkn

b(x(t), u(t))dt− V ∗
n (xini, 0)

]2

= Ex(·)∼p∗n(xini)

[mn−1∑
k=0

∫ tk+1
n

tkn

b(x(t), u(t))dt+ V ∗
n (xn(t

k+1
n ), tk+1

n )− V ∗
n (xn(t

k
n), t

k
n)︸ ︷︷ ︸

Jn,k

]2

= Vx(·)∼p∗n(xini)

[
mn−1∑
k=0

Jn,k

]

=

mn−1∑
k=0

Vx(·)∼p∗n(xini) [Jn,k] . (B.18)

The first equality follows immediately from the definition of variance, and the second comes
from equation B.17. Next, on each subinterval [tkn, t

k+1
n ] we introduce the temporal increment

Jn,k, for which, by construction, E[Jn,k] = E[Jn,k|xn(tkn)] = 0, yielding the third equal-
ity. Then, {Jn,k}mn−1

k=0 is a martingale-difference sequence with respect to the natural filtration
Fk = σ

(
xn(t

0
n), . . . , xn(t

k
n)
)
, so orthogonality implies

Vx(·)∼p∗n(xini)

[
mn−1∑
k=0

Jn,k

]
=

mn−1∑
k=0

Vx(·)∼p∗n(xini)[Jn,k].

Moreover, by the law of total variance, together with E[Jn,k|xn(tkn)] = 0, we have

Vx(·)∼p∗n(xini) [Jn,k]

= Ex∼p∗n(xini,tkn)

[
Vx(·)∼p∗n(x)[Jn,k|x]

]
+ Vx(·)∼p∗n(x)

[
Ex∼p∗n(xini,tkn)

[Jn,k|x]
]

= Ex∼p∗n(xini,tkn)

[
Vx(·)∼p∗n(x)[Jn,k|x]

]
= Ex∼p∗n(xini,tkn)

[
V x(·)∼p∗n(x),
x′∼p∗n(x,∆n,k)

[∫ ∆n,k

0

b(x(t), u(t))dt+ V ∗
n (x

′, tk+1
n )

]]
. (B.19)

Furthermore, by Assumption 5.1 we have
∫∆n,k
0

b(xn(t), un(t))dt ≤ ∆n,k for each ∆n,k. Thus,

Ex∼p∗n(xini,tkn)

[
V x(·)∼p∗n(x),
x′∼p∗n(x,∆n,k)

[∫ ∆n,k

0

b(x(t), u(t))dt+ V ∗
n (x

′, tk+1
n )

]]
≤ 2Ex∼p∗n(xini,tkn)

[
Vx′∼p∗n(x,∆n,k)

[
V ∗
n (x

′, tk+1
n )

]]
+ 2Ex∼p∗n(xini,tkn)

[
Vx(·)∼p∗n(x)

[∫ ∆n,k

0

b(x(t), u(t))dt

]]
(B.20)

≤ 2Ex∼p∗n(xini,tkn)

[
Vx′∼p∗n(x,∆n,k)

[
V ∗
n (x

′, tk+1
n )

]]
+ 2∆2

n,k. (B.21)

Here, equation B.20 follows from the fact that Var(a + b) = Var(a) + Var(b) + 2Cov(a, b) ≤
Var(a) + Var(b) + 2

√
Var(a) ·Var(b) ≤ 2Var(a) + 2Var(b). Summing equation B.21 over k =

0, . . . ,mn − 1.

Thus we have, for each n,

E[Jn|Jn−1, . . . , J1] ≲ Varun +∆2
n. (B.22)
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Applying Lemma B.3 to equation B.22 then yields

N∑
n=1

min{Jn, y} ≲ y log(1/δ) + log(1/δ)

N∑
n=1

E[Jn|Jn−1, . . . , J1]

≲ y log(1/δ) + log(1/δ)

N∑
n=1

Varun + log(1/δ)

N∑
n=1

∆2
n. (B.23)

Finally, we plug y as the upper bound of Jn in equation B.12 in equation B.23, leading to

N∑
n=1

Jn ≲ log2(N/δ)

(
1 +

√
max

1≤n≤N
∆2
n +

N∑
n=1

Varun +

N∑
n=1

∆2
n

)

≲ log2(N/δ)

(
1 +

N∑
n=1

Varun +

N∑
n=1

∆2
n

)
,

where for the second inequality we use the fact
√
x ≤ 1 + x, thus completing the proof.

The following lemma gives the final high-probability upper bound on the cumulative regret in terms
of decomposition results established in previous lemmas.

Lemma B.15. Let Ñ ⊆ [N ] be the episode index set defined in Lemma B.11. Under events
EB.8, EB.11, EB.12, EB.13, EB.14, we have

Regret(N) ≲ log(N/δ)

(√√√√dmN
β log(mN )

( N∑
n=1

Varunf∗,g∗ +

N∑
n=1

∆2
n

)

+N − |Ñ |+ dmN
β log(mN ) +

∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|
)
.

Proof. By Lemma B.8, we have Rf∗,g∗(un) ≤ Rfn,gn(un). For any n ∈ Ñ , by Lemma B.10, we
have

Rf∗,g∗(un)−Rf∗,g∗(un) ≤ Rfn,gn(un)−Rf∗,g∗(un)

≤ min

{
1,

m−1∑
k=0

(Ik1,n + Ik2,n + Ik3,n + Ik4,n) + I0,n

}
.

Then we can bound the regret as

Regret(N) ≲ N − |Ñ |+
∑
n∈Ñ

m−1∑
k=0

(Ik1,n + Ik2,n + Ik3,n + Ik4,n) + I0,n. (B.24)

From Lemma B.11, we have∑
n∈Ñ

(
I0,n +

m−1∑
k=0

Ik1,n + Ik2,n + Ik3,n + Ik4,n

)

≲ dmN
β log(mN ) +

√√√√dmN
β log(mN )

∑
n∈Ñ

m−1∑
k=0

Vx∼p∗n(xn(tkn),∆)

[
Vn(x, t

k+1
n )

]

+ log(1/δ)

(√√√√ N∑
n=1

Varunf∗,g∗ +

√√√√ N∑
n=1

∆2
n

)
+
∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|. (B.25)

33



Preprint. Under review.

From Lemma B.12, we have

∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)Vn(x, t
k+1
n )

≲
∑
n∈Ñ

mn−1∑
k=0

Vx∼p∗n(xn(tkn),∆n,k)V
∗
n (x, t

k+1
n ) + dmN

β log(mN ) +
∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|

≲ log2(N/δ)

(
1 +

N∑
n=1

Varunf∗,g∗ +

N∑
n=1

∆2
n

)
+ dmN

β log(mN ) +
∑
n∈Ñ

mn−1∑
k=0

|Ik4,n|, (B.26)

where the second inequality holds due to Lemma B.14. Substituting equation B.26 into equation B.25,
then substituting them into equation B.24, we have our final regret bound.

B.5 PROOF OF THEOREM 5.11

We first have our concentration lemma.

Lemma B.16. With probability at least 1− δ, we have for all n ∈ [N ], (f∗, g∗) ∈ Pn ∩ P̂n, and

n−1∑
i=1

mi−1∑
k=0

H2(pfn,gn(ui, xi(t
k
i ), ∆̂i,k)∥pf∗,g∗(ui, xi(t

k
i ), ∆̂i,k)) ≤ β, (B.27)

where β = 5 log
(
N · C1/ϵ/δ

)
.

Proof. By Lemma B.8, we already have (f∗, g∗) ∈ Pn with probability at least 1 − δ/2. Then
we apply Lemma B.12 again with Di,k being the delta distribution at (ui, xi(tki ), ∆̂i,k) guarantees
(f∗, g∗) ∈ P̂n and equation B.27 holds with probability at least 1−δ/2. Taking a union bound over the
two events, we conclude that with probability at least 1− δ, both statements hold simultaneously.

Next we have the following lemma.

Lemma B.17. Let the event EB.16 be the event of Lemma B.16. Then under event EB.16, there exists
a set N1 ⊆ [N ] such that

• We have |N1| ≤ 13 log2(4βmN ) · d8βmN
.

• For any n ∈ [N ], n ∈ N1 is a stopping time.

• We have∑
i∈[N ]\N1

mi−1∑
k=0

H2
(
pfi,gi(ui, xi(t

k
i ), ∆̂i,k)∥pf∗,g∗(ui, xi(t

k
i ), ∆̂i,k)

)
≤ 3dmN

+ 7dmN
β log(mN ).

Proof. We apply Lemma 6 in Wang et al. (2024b) here with the distribution class pf,g, input space
Π×X × [T ] and function class Ψ.

Next we bound
∑
n∈Ñ

∑m−1
k=0 |Ik4,n| with the help of Lemma B.16 and Lemma B.17.

Lemma B.18. Let Ñ ⊆ [N ] be an episode index set satisfying Ñ ⊆ [N ] \ N1. Under event EB.16,
with probability at least 1− δ, the quantities Ik4,n introduced in introduced in Lemma B.10 satisfy

∑
n∈Ñ

m−1∑
k=0

|Ik4,n| ≲

√√√√dmN
β log(mN )

N∑
n=1

∆2
n.
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Proof. Fix n ∈ Ñ and 0 ≤ k < mn. We have

|Ik4,n|

=

∣∣∣∣Ex(·)∼pn(xn(tkn))[ ∫ ∆n,k

t=0

b(x(t), u(t))dt

]
− Ex(·)∼p∗n(xn(tkn))

[ ∫ ∆n,k

t=0

b(x(t), u(t))dt

]∣∣∣∣
≤
∫ ∆n,k

t=0

∣∣∣∣Ex∼p∗n(xn(tkn),t)b(x, u)− Ex∼pn(xn(tkn),t)b(x, u)
∣∣∣∣dt

≲
∫ ∆n,k

t=0

√
Vx∼p∗n(xn(tkn),t)b(x, u)H

2(p∗n(xn(t
k
n), t)∥pn(xn(tkn), t))

+H2(p∗n(xn(t
k
n), t)∥pn(xn(tkn), t))dt

≲
∫ ∆n,k

t=0

H(p∗n(xn(t
k
n), t)∥pn(xn(tkn), t))dt

= ∆n,k ·H(p∗n(xn(t
k
n), ∆̂n,k)∥pn(xn(tkn), ∆̂n,k))︸ ︷︷ ︸

Jk1,n

+

∫ ∆n,k

t=0

H(p∗n(xn(t
k
n), t)∥pn(xn(tkn), t))dt−∆n,kH(p∗n(xn(t

k
n), ∆̂n,k)∥pn(xn(tkn), ∆̂n,k))︸ ︷︷ ︸

Jk2,n

,

where we use the fact that b ≤ 1 and H ≤ 1. For Jk1,n, we have:

∑
n∈Ñ

mn−1∑
k=0

Jk1,n ≤

√√√√∑
n∈Ñ

mn−1∑
k=0

∆2
n,k ·

√√√√∑
n∈Ñ

mn−1∑
k=0

H2(p∗n(xn(t
k
n), ∆̂n,k)∥pn(xn(tkn), ∆̂n,k))

≤

√√√√dmN
β log(mN )

N∑
n=1

∆2
n, (B.28)

where the first inequality is by Cauchy-Schrawz inequality and the last one holds due to Lemma B.9.

For {Jk2,n}n,k, because ∆̂n,k is sampled uniformly from [0,∆n,k], the sequence {Jk2,n}n,k forms
a martingale difference sequence (MDS). Noting |Jk2,n| ≤ 2∆k

n we can apply Azuma-Hoeffding
inequality to Jk2,n, which infers that with probability at least 1− δ,

∑
n∈Ñ

mn−1∑
k=0

Jk2,n =

N∑
n=1

1(n ∈ Ñ )

mn−1∑
k=0

Jk2,n ≲

√√√√∑
n∈Ñ

mn−1∑
k=0

∆2
n,k log(1/δ) ≤

√√√√ N∑
n=1

∆2
n log(1/δ).

(B.29)

Therefore, from equation B.28 and equation B.29, we obtain our bound.

Then we have our final proof of Theorem 5.11.

Proof of Theorem 5.11. We set Ñ = [N ] \ (N ∪N1). Since both n ∈ N , n ∈ N1 are stopping time,
then Ñ is also a stopping time. Clearly we have Ñ ⊆ [N ] \N and Ñ ⊆ [N ] \N1, thus we can apply
both Lemma B.15 and B.18. Then substituting the bound of

∑
n∈Ñ

∑mn−1
k=0 |Ik4,n| from Lemma

B.18 into Lemma B.15 and using the fact that

N − |Ñ | ≤ |N |+ |N1| ≤ 26 log2(4βmN ) · d8βmN

concludes our proof. Here, the second inequality holds due to the bounds of |N | in Lemma B.9 and
|N1| in Lemma B.17.

35



Preprint. Under review.

Algorithm 3 Lagrangian CT-MLE

Require: Episode number N , policy class Π, initial state xini, drift class F , diffusion class G, reward
function b, planning horizon T , parameter η.

1: For each n ∈ [N ], determine a fixed measurement time sequence 0 = t0n < · · · < tmnn = T . For
any 0 ≤ k < mn, denote measurement gaps ∆n,k := tk+1

n − tkn, randomized measurement gap
∆̂n,k ∼ Unif(0,∆n,k).

2: for episode n = 1, . . . , N do
3: Solve (fn, gn) via

fn, gn = argmax
(f,g)∈F×G

{
Rf,g(un−1) + ηn ·

( n−1∑
i=1

mi−1∑
k=0

log pf,g(xi(t
k+1
i )|ui, xi(tki ),∆i,k)

+

n−1∑
i=1

mi−1∑
k=0

log pf,g(xi(t
k
i + ∆̂i,k)|ui, xi(tki ), ∆̂i,k)

)}
,

4: Set policy un as un = argmaxu∈ΠRfn,gn(u).
5: Execute the n-th episode and observe xn(t

0
n), xn(t

0
n + ∆̂n,0) . . . , xn(t

mn−1
n +

∆̂n,mn−1), xn(t
mn
n ).

6: end for
7: return Randomly pick an n ∈ [N ] uniformly and output û as un.

C NUMERICAL EXPERIMENTS

Algorithm 1 (CT-MLE) is theoretically clean and analysis-friendly, but its direct use is computationally
prohibitive. The core difficulty is that it optimizes a reward Rf,g(u) over parameters (f, g) subject to
two confidence constraints, i.e., membership in the intersection Pn ∩ P̂n. This yields a constrained
program with set intersections defined by likelihood inequalities, which is generally intractable at
scale.

Let

L(n)
f,g :=

n−1∑
i=1

mi−1∑
k=0

log pf,g(xi(t
k
i +∆i,k)|ui, xi(tki ),∆i,k) (C.1)

L̂(n)
f,g :=

n−1∑
i=1

mi−1∑
k=0

log pf,g(xi(t
k
i + ∆̂i,k)|ui, xi(tki ), ∆̂i,k). (C.2)

The CT-MLE solves
max

(f,g)∈F×G
Rf,g(un−1) (C.3)

s.t. L(n)
f,g ≥ max

(f ′,g′)∈F×G
L(n)
f ′,g′ − β, (C.4)

L̂(n)
f,g ≥ max

(f ′,g′)∈F×G
L̂(n)
f ′,g′ − β, (C.5)

i.e., (f, g) must lie in the β-near-optimal regions of both likelihoods.

To make the problem implementable, we replace the hard constraints by penalties via standard
Lagrangian relaxation. Introducing multipliers ηn, η̂n ≥ 0, we obtain the unconstrained surrogate

max
(f,g)∈F×G

{
Rf,g(un−1) + ηn

(
L(n)
f,g −maxL(n) + β

)
+ η̂n

(
L̂(n)
f,g −max L̂(n) + β

)}
. (C.6)

Since maxL(n), max L̂(n), and β are constants with respect to (f, g), they do not affect the maximizer
and can be dropped. For simplicity we tie the multipliers, ηn = η̂n, yielding the implementation-
friendly objective used in Algorithm 3:

max
(f,g)∈F×G

{
Rf,g(un−1) + ηn

(
L(n)
f,g + L̂

(n)
f,g

)}
. (C.7)
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The coefficient ηn governs the trade-off between the task reward and adherence to high-likelihood
regions defined by both data fidelities (L(n) and L̂(n)). In effect, the relaxation converts the intractable
set intersection into a soft regularizer that is straightforward to optimize with standard gradient-based
methods over parameterized (f, g). This surrogate serves as the entry point to our experiments,
enabling a scalable approximation to CT-MLE while preserving the original constraints.

C.1 IMPLEMENTATION DETAILS

We address several practical implementation challenges for Algorithm 3. The primary challenge
is computing the conditional probability density function pf,g(xi(tk+1

i ) | ui, xi(tki ),∆i,k), where
∆i,k = tk+1

i − tki . Since direct maximization of the conditional log-likelihood is infeasible due
to the unknown normalizing constant of the SDE transition density, we employ continuous-time
score matching (Hyvärinen & Dayan, 2005). This approach eliminates the intractable normalization
term by minimizing the Fisher divergence between the model score and the data score, providing
a tractable and computationally efficient surrogate for MLE (Pabbaraju et al., 2023). Following
Song et al. (2020), we adopt the sliced formulation to obtain unbiased and computationally efficient
estimators for the drift and diffusion parameters (fθ, gθ) used in Algorithm 3.

The second challenge involves determining the optimal policy un given the estimated drift f and
diffusion g terms. Using the learned SDE, we generate model rollouts and implement a continuous-
time actor-critic update: the critic Vξ minimizes the mean-squared temporal difference error, while the
actor uϕ maximizes discounted n-step returns through stochastic gradient ascent. Our implementation
follows deterministic policy gradients (Silver et al., 2014; Lillicrap et al., 2015) but obtains exact
gradients by backpropagating through the ODE, similar to neural ODE policy evaluation in continuous
time (Chen et al., 2018; Yildiz et al., 2021).

We build upon the continuous-time model-based RL framework of Yildiz et al. (2021), augmenting it
with additive Gaussian noise to formulate the environment dynamics as an SDE rather than an ODE.
Crucially, we replace the original dynamics learning objective with a continuous-time sliced score
matching (SSM) loss (Song et al., 2020). Over each of the Ndyn gradient updates, we perform the
following steps to minimize the model loss:

L(θ) = JSSM(θ)− η′E[V uψfθ,gθ (x)],

where JSSM is the sliced score-matching objective, the second term biases model learning toward
higher policy value, and η′ = 1

ηnκ
with κ > 0 as scale factor aligning the numerical scales of the

SSM loss and the (negative) planning objective.

1. Data Sampling: Draw a batch of Bdyn subsequences of length Hdyn from the training dataset D:{(
xi(t0), ui(t0)

)
, . . . ,

(
xi(tHdyn

), ui(tHdyn
)
)}Bdyn

i=1
∼ D,

where xi(tk) denotes the state at measurement time tk and ui(tk) = u
(
xi(tk)

)
is the correspond-

ing control input under policy u.

2. Score Matching Computation: For each subsequence i and time step k ∈ {0, . . . , Hdyn − 1}:

(a) Compute the interval length: ∆tki = tk+1
i − tki .

(b) Compute the conditional mean via ODE integration:

µ
(i,k)
θ = ODEInt

(
fθ(·, ui(tk)), xi(tk), [0,∆tki ]

)
,

where ODEInt(·) denotes a numerical ODE solver (we use the Dormand-Prince RK45
integrator), fθ(·, ui(tk)) is the learned drift network with control input ui(tk), and [0,∆tki ]
is the integration interval.

(c) Evaluate the interval covariance:

Σ
(i,k)
θ =

(
gθ(xi(tk), ui(tk))

)2
∆tki ,

where we square the instantaneous noise scale element-wise and multiply by the interval
length to obtain the diagonal covariance matrix.
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(d) Compute the model score at the interval endpoint xi(tk+1):

s
(i,k)
θ = −

(
Σ

(i,k)
θ

)−1(
xi(tk+1)− µ(i,k)

θ

)
.

(e) Estimate the sliced score matching loss using Mproj random projections. For each
Rademacher vector vi,k,m ∈ {±1}d, compute:

ℓi,k,m =
1

2
∥s(i,k)θ ∥2 + v⊤i,k,m∇x

[
v⊤i,k,ms

(i,k)
θ

]∣∣∣∣
x=xi(tk+1)

, m = 1, . . . ,Mproj.

This provides an unbiased Monte Carlo estimate of the sliced score matching loss, combining
the score energy term with its directional derivative.

(f) Aggregate the batched sliced score matching loss:

JSSM(θ) =
1

Bdyn ·Hdyn ·Mproj

Bdyn∑
i=1

Hdyn−1∑
k=0

Mproj∑
m=1

ℓi,k,m.

3. Planning Loss Computation:
(a) Estimate the advantage A(xi(tk), ui(tk)) for each state-action pair in the batch using the

current critic networks:

Âi = ri(tk) + γV ′
ψ(xi(tk+1))−Qψ(xi(tk), ui(tk)),

where Qψ is the critic network and V ′
ψ is the target value function.

(b) Compute the gradient of the log-transition probability with respect to the model parameters.
For a Gaussian transition model parameterized by (µθ,Σθ):

∇θ logPθ(xk+1|xk, uk) = ∇θ
[
−1

2
log |Σθ| −

1

2
(xk+1 − µθ)⊤Σ−1

θ (xk+1 − µθ)
]
.

This gradient is computed efficiently using automatic differentiation on the terms calculated
in Step 2(b).

(c) Form the Monte Carlo estimate of the planning gradient:

∇θE[V ] ≈ 1

Bdyn

Bdyn∑
i=1

Âi · ∇θ logPθ(xi(tk+1)|xi(tk), ui(tk)).

4. Combined Model Update: Update the model parameters via gradient descent:

θ ← θ − αmodel

(
∇θJSSM − η′∇θE[V ]

)
,

using the AdamW optimizer (Kingma, 2014; Loshchilov & Hutter, 2017).

C.2 MAIN RESULTS.

We evaluate Algorithm 3 on three classic control tasks from the Gymnasium benchmark (Brockman
et al., 2016; Towers et al., 2024), comparing against two state-of-the-art continuous-time baselines:
ENODE (Yildiz et al., 2021) and SAC-TaCoS (Treven et al., 2024b).

Tasks. We consider three environments of increasing difficulty:

• Pendulum (Easiest): The inverted pendulum swing-up problem is a fundamental challenge in
control theory. The system consists of a pendulum attached at one end to a fixed pivot, with the
other end free to move. Starting from a hanging-down position, the goal is to apply torque to
swing the pendulum into an upright position, aligning its center of gravity directly above the pivot.
The control space represents the torque applied to the free end, while the state space includes the
pendulum’s x-y coordinates and angular velocity. This environment is considered the simplest due
to its continuous control space and relatively straightforward dynamics with a single degree of
freedom.
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Figure 2: Performance comparison of Algorithm 3, ENODE (Yildiz et al., 2021), and SAC-TaCoS
(Treven et al., 2024b) across three environments with noise σ = 2.0 (±1 standard error).

• CartPole (Medium Difficulty): The CartPole system comprises a pole attached via an unactuated
joint to a cart that moves along a frictionless track. Initially, the pole is in an upright position, and
the objective is to maintain balance by applying forces to the cart in either the left or right direction.
The control space determines the direction of the fixed force applied to the cart, while the state
space includes the cart’s position and velocity, as well as the pole’s angle and angular velocity. This
environment presents moderate difficulty due to its discrete action space and the need to balance an
inherently unstable system with coupled dynamics.

• Acrobot (Most Difficult): The Acrobot system consists of two links connected in series, forming
a chain with one end fixed. The joint between the two links is actuated, and the goal is to apply
torques to this joint to swing the free end above a target height, starting from the initial hanging-
down state. We use the fully actuated version of the Acrobot environment, as no method has
successfully solved the underactuated balancing problem, consistent with Zhong & Leonard (2020).
The control space is discrete and deterministic, representing the torque applied to the actuated joint,
while the state space consists of the two rotational joint angles and their angular velocities. This
environment is the most challenging due to its complex nonlinear dynamics involving two coupled
pendulums, requiring sophisticated control strategies to coordinate the motion of both links.

For the stochastic setting, we follow Treven et al. (2024b) and inject Gaussian noise N (0, σ2I)
at every time step, with σ = 2.0 used across all experiments. The noise is applied to all state
components (such as angle θ and angular velocity θ̇), converting the otherwise deterministic systems
into stochastic environments. Performance is evaluated after 5, 15, and 15 training episodes on
Pendulum, CartPole, and Acrobot, respectively, consistent with standard evaluation protocols.

Baselines. ENODE learns dynamics using ensemble neural ODEs and optimizes a theoretically con-
sistent continuous-time actor-critic, providing uncertainty-aware control without time discretization.
However, it was not specifically designed for stochastic environments. SAC-TaCoS reformulates the
continuous-time SDE control problem as an equivalent discrete-time extended MDP, where policies
output both actions and their duration. This enables time-adaptive control using standard algorithms
like SAC.

Regarding the measurement grid, ENODE adopts fixed, equidistant intervals following Yildiz et al.
(2021), while SAC-TaCoS uses adaptive intervals as in Treven et al. (2024b). For simplicity, our
method also uses equidistant intervals. We apply annealed Lagrange multipliers ηn = ηbase/n with
ηbase = 4, together with adaptive scaling κn ∝ SSM scale/planning scale to maintain a stable 10:1
SSM-to-planning ratio.

Our implementation follows the network architecture of ENODE (Yildiz et al., 2021). The dynamics
model is an ensemble of 10 neural networks, each with three hidden layers of width 200 and ELU
activations; the output layer uses no activation. The policy and critic networks are standard MLPs
with architecture [3, 200, 200, 1] (two hidden layers of width 200). The policy uses ReLU activations
in the hidden layers and a Tanh output, while the critic uses Tanh activations in the hidden layers and
a linear output layer.

Results. Figure 2 presents our main findings. Our CT-MLE algorithm achieves superior asymptotic
performance across all three environments, demonstrating effective adaptation to stochastic dynamics.
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Figure 3: Optimal measurement gap ∆σ and mean episodes to success (±1 standard error) under
varying environment stochasticity σ. Results averaged over 10 random seeds for Pendulum and 5
seeds for Cart Pole and Acrobot environments.

While SAC-TaCoS exhibits faster initial convergence and lower variance, our method ultimately
achieves higher cumulative rewards after sufficient training.

ENODE shows consistently poor performance across all tasks, with minimal learning progress
even after extended training. This degradation is expected given that ENODE was not designed for
stochastic environments. The failure is evident in CartPole and Acrobot, where ENODE achieves no
meaningful reward improvement.

The performance advantage of our method increases with task complexity. In Acrobot, the most
challenging environment with complex nonlinear dynamics, the gap between our approach and the
baselines is most pronounced. This suggests that our algorithm’s ability to model and adapt to
noisy dynamics becomes increasingly valuable as learning difficulty increases, making it particularly
well-suited for complex stochastic control problems.

C.3 ABLATION STUDY

Validation of Theoretical Claims. We validate our theoretical claims through systematic numerical
experiments. Following Yildiz et al. (2021), we define task success as achieving rewards of at least
0.9 after a warm-up period (Twarm-up = 3 seconds) within a planning horizon of T = 10 seconds.
We set ηn to a large value as it does not influence optimal gap selection. For each volatility level
σ ∈ {0, 0.4, . . . , 2.0}, we evaluate CT-MLE with equidistant measurement gaps ∆ = 2−i for
i ∈ {0, 1, . . . , 7}. The optimal gap ∆σ is defined as the largest gap achieving the minimum number
of episodes to success.

Figure 3 demonstrates that the optimal measurement gap ∆σ increases monotonically with environ-
ment volatility σ, directly validating our theoretical analysis. This empirical observation confirms
Remark 5.15, which establishes that the optimal gap for minimizing episode complexity scales
proportionally with the total variance: ∆ ∝ VarΠ. Higher volatility induces larger variance, neces-
sitating wider measurement gaps for optimal performance. Notably, in low-stochasticity regimes
(σ ∈ {0, 0.4}), the optimal gap is not the finest resolution tested (2−7), confirming our theoretical
prediction that excessive measurement precision yields diminishing returns.

The results further validate our algorithm’s instance-dependent complexity guarantees. As shown in
Figure 3, the number of episodes required for success increases with σ, confirming that our algorithm
correctly identifies harder instances (higher σ) and adaptively allocates more samples. This behavior
aligns with our theoretical framework, where episode complexity directly reflects the total interaction
data required for convergence.

Ablation on Neural Network Structure To evaluate how sensitive CT-MLE is to the choice of
function approximator, we conducted an ablation study on the Pendulum environment with noise
level σ = 2.0, varying the network width while keeping all other components fixed. The tested
architecture ranged from relatively small models with 150 hidden units per layer to wider models
with up to 250 units. Across 5 random seeds, all five architectures exhibit nearly indistinguishable
learning curves and achieve similar episode returns after two episodes of training (see figure 4). The
smallest network performs on par with larger ones, and scaling the width beyond 200 units does
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Figure 4: Ablation on Neural Network Width in
the Dynamics Model Figure 5: Reward error convergence follows the

theoretical 1/
√
N rate (Pendulum, σ = 2.0).

not produce meaningful improvements, suggesting that CT-MLE exhibits reasonable robustness to
architectural choices.

Numerical Convergence Rate. We also report the reward error (mean ±1 standard error over 10
seeds) across training episodes for the Pendulum environment with σ = 2.0, using the corresponding
optimal gap ∆σ = 0.125, as shown in Figure 5. The reward error decreases with the number of
episodes N , and the decay trend closely follows an approximate 1/

√
N convergence rate, which

aligns well with our theoretical predictions.

C.4 ADDITIONAL DETAILS

All experiments were conducted on a single NVIDIA A6000 GPU. Each 15-episode Pendulum
swing-up task required approximately 5 hours to complete; each 30-episode Cart Pole task required
approximately 15 hours to complete; and each 25-episode Acrobot task required approximately
12 hours to complete. The peak GPU memory utilization per run ranges from 4GB to 20GB
approximately. We summarize all key hyperparameters used in our experiments in Table 1, and report
the neural network architecture in Table 2.

Table 1: Hyper-parameters in numerical experiment

Hyperparameter Default Description
ηbase 4 Base value for Lagrangian Multiplier
N0 3 Number of trajectories at observation time points in initial data set
H 50 Trajectory length (in seconds) in the data set

Ninc 1 Number of trajectories at observation time points added to the data
set after each episode

Bdyn 5 Batch size of the dynamic learning
Ndyn 500 Number of dynamic learning update iterations in each episode
Hdyn 5 Length of each subsequence (horizon) in dynamic learning
Mproj 1 Rademacher projections per sample in dynamic learning

Npol 250 Number of policy learning update iterations in each episode
Hpol 5 Length of each subsequence (horizon) in policy learning

T 10 Length of each test trajectory at the end of every episode

Twarm−up 3 The warm-up subsequence of each test trajectory that does not
collect rewards and evaluate at observation time points

Ntest 10 Number of test trajectories at the end of every episode
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Table 2: Architecture of Neural Network in numerical experiment

Network Architecture Hidden Activation Output Activation
Dynamics [4, 200, 200, 200, 3] ×10 ELU Linear
Policy [3, 200, 200, 1] ReLU Tanh
Critic [3, 200, 200, 1] Tanh Linear
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